Pulseras de Fibonacci

Prueba de selección para ESTALMAT 2016

Se dirige a una edad de: 11/13

Disponemos de muchas cuentas, numeradas del 0 al 7.

Tratamos de hacer pulseras, siguiendo unas reglas.

En cada pulsera, al sumar los números de dos cuentas consecutivas, debe dar el número de la que les sigue.

Si esa suma es mayor de 7, empezaremos a contar desde 0 de nuevo, es decir, si la suma da once, por ejemplo, la cuenta que pondremos será la 3, ya que el ocho es como la cuenta 0, el nueve será como el 1, el diez como el 2, y el once como el 3. En el momento que vuelvan a repetirse dos cuentas, podremos cerrar la pulsera.

Un ejemplo de pulsera sería la que aparece debajo de esta línea.

Indica todas las pulseras diferentes que pueden construirse, detallando por qué no pueden hacerse más.

Saludos en tres parejas

Primero y segundo de ESO, Olimpiada Matemática de Secundaria, 2017

Se dirige a una edad de: 12/14 años

Tres parejas se reúnen para comer. Cada persona llega en un momento diferente, y saluda a todos los que están, excepto a su pareja.

Cuando todos están reunidos, uno de ellos pregunta a cada asistente a cuántas personas ha saludado al llegar, obteniendo cinco respuestas distintas.

¿En qué lugar ha llegado la persona que pregunta, que llegó después que su pareja?

La solución: Pulsa aquí

Coloreado mínimo en 5 x 5

Segundo nivel de la Olimpiada de Mayo 2016

Se dirige a una edad de: 14/15 años

¿Cuántas casillas se deben pintar como mínimo en un tablero 5 x 5 de tal modo que en cada fila, en cada columna y en cada cuadrado de 2 x 2 haya al menos una casilla pintada?

La respuesta requiere que se dé una coloración de ejemplo, para mostrar que es posible y explicar de forma clara que es imposible encontrar una coloración válida pintando menos casillas.

¡Inténtalo tú mismo!

La solución: Pulsa aquí