Estadística + Ingeniería Multimedia

Blog sobre la asignatura Estadística de Ingeniería Multimedia

Estadística + Ingeniería Multimedia - Blog sobre la asignatura  Estadística de Ingeniería Multimedia

Teorema de Bayes y probabilidad total con Geogebra

El siguiente Geogebra está pensado para intentar que el alumnado de Estadística de Ingeniería Multimedia, entienda los teoremas de Bayes y probabilidad total a la hora de explicarlos en clase, utilizando el caso particular de una partición del espacio muestral en dos sucesos. Pincha en la imagen para acceder a él.

 

Una vez que hayas visto cómo funciona el geogebra, te propongo que lo utilices para resolver los siguientes ejercicios. Pero no olvides hacerlos antes a mano, definiendo los distintos sucesos e indicando las distintas probabilidades  que se nos dan en el problema y las que nos piden que calculemos.

Ejercicio 1: En dos plantas, A1 y A2 se fabrican el total de los componentes electrónicos de una empresa. Concretamente en la planta A2 se fabrica el triple de componentes  que en la planta A1.  Los porcentajes de producción defectuosa de estas plantas son, respectivamente, el 5 % y el 2 %.

(1) Si se selecciona un componente al azar cuál es la probabilidad de que sea defectuoso.

(2) Si se selecciona un componente al azar y resulta ser defectuoso, calcula  la probabilidad de que se haya producido en la planta A1.

(3) Si se selecciona un componente al azar y resulta ser correcto, calcula  la probabilidad de que se haya producido en la planta A1.

Ejercicio 2: Una empresa dispone de un software para analizar el buen funcionamiento de los videojuegos que vende. Se sabe que la  probabilidad  de que dicho software indique que el videojuego está defectuoso cuando efectivamente lo está, es 0.97 y la probabilidad de que el programa indique que el videojuego funciona correctamente cuando efectivamente su funcionamiento es correcto es 0.90. Sabiendo que el 2% de los videojuegos que vende no funcionan correctamente y son devueltos, calcula la probabilidad de que un videojuego  funcione correctamente habiendo el programa indicado que estaba defectuoso.

Diagramas de Venn para el cálculo de probabilidades con Geogebra

Con ayuda de los diagramas de Venn podemos dar los primeros pasos para la comprensión del cálculo de probabilidades de distintos  sucesos de un espacio muestral. El siguiente geogebra se ha realizado con dicho propósito. En él trabajaremos en términos de porcentajes y en caso de querer calcular probabilidades sólo habrá que dividir entre cien los resultados obtenidos. Para trabajar estos conceptos se puede proponer un ejercicio similar al siguiente.

En una ciudad se publican 3 revistas sobre tecnología y videojuegos A, B y C. Mediante una encuesta se estima que el 30% lee la revista A el 20% la revista  B, el 15% lee la C, el 10% lee A y B, el 6% lee A y C, el 5% lee B y C, y el 3% lee las tres revistas.

  • ¿Qué porcentaje lee al menos dos revistas?
  • ¿Qué porcentaje lee solo una revista?
  •  ¿Qué porcentaje no lee ninguna revista?
  • ¿Qué porcentaje lee A pero no B?

En primer lugar introduciremos los datos que nos dan en el ejercicio tal y como aparece en el Geogebra al que puedes acceder pinchando en la imagen y obtendremos interactivamente los distintos valores del diagrama de Venn:

 Una vez se tienen los datos en el diagrama de Venn y se entiende su significado será muy fácil contestar las preguntas propuestas:

a) ¿Qué porcentaje lee al menos dos revistas? 7+3+3+2=15%

b) ¿Qué porcentaje lee solo una revista? 17+8+7=32%

c) ¿Qué porcentaje no lee ninguna revista? 53%

d) ¿Qué porcentaje lee A pero no B? 17+3=20%

Con ayuda de dicho geogebra puedes  realizar ejercicios similares al anterior. Os  propongo aquí uno para practicar, recuerda que cuando hablamos de probabilidades habrá que pasar los resultados  obtenidos con el Geogebra a tanto por uno dividiendo entre 100.

Mediante una encuesta realizada a jovenes para analizar sus preferencias en juegos  on-line se ha estimado  que el 80% juega al League of Legends (LOL), el 55% juega al World of Warcraft  (WoW) y  el 35% juega a Minecraft (Min), el 45 % juega  al LOL y al WoW, el 30 % juega al LOL y al Min, el 18% juega  al WoW y al Min, y el 15% juega a los tres.

Extrapolando los resultados a la población, si se elige  un joven al azar calcula:

  • ¿Cuál es la probabilidad de que juegue  al menos a dos de estos  juegos on-line?
  • ¿Cuál es la probabilidad de que juegue al menos a uno de estos  juegos on-line?
  • ¿Cuál es la probabilidad de que no juegue a ninguno de estos juegos on-line?

¿Qué porcentaje de jóvenes juega al  LOL pero no al  Minecraft?

¿Qué porcentaje de jóvenes juega al  Minecraft  pero no a al  LOL?

Si quieres ver los geogebras que se van publicando en el blog pincha aquí.

 

Distribución Normal con Geogebra

En los siguientes enlaces se puede acceder a varios geogebras realizados por Manuel Sada que nos permiten entender mejor en qué consiste la distribución Normal y el cálculo de probabilidades en la misma. Como ya sabéis, GeoGebra es un software libre de matemáticas, escrito en Java,  para educación en todos sus niveles disponible en múltiples plataformas. Reúne dinámicamente, aritmética, geometría, álgebra y cálculo en un único conjunto tan sencillo a nivel operativo como potente. Ofrece representaciones diversas de los objetos desde cada una de sus posibles perspectivas: vistas gráficas, algebraicas, estadísticas y de organización en organización en tablas y planillas y hojas de datos dinámicamente vinculadas.

Distribución Normal

Cálculo de probabilidades en una N(0,1) del tipo  P(Z<k)=P(Z≤k)

Cálculo de probabilidades en una N(μ,σ) del tipo  P(X<k)=P(X≤k)

Cálculo de probabilidades en una N(0,1) del tipo P(a<Z<b)

Uno de los aspectos que serán de especial relevancia  para la comprensión del resto de temas de la asignatura es saber calcular percentiles en distintas distribuciones y entender su significado. El siguiente geogebra realizado por José Álvarez nos lo muestra gráficamente para el caso de la N(0,1).

Valores críticos de una N(0,1)