El Teorema de Bottema

Un grupo de piratas quería enterrar un tesoro en una isla en la que sólo había una piedra y dos cocoteros. El capitán situó a dos de sus piratas frente a la piedra y les ordenó:

-Caminad cada uno hacia un cocotero contando los pasos. Una vez allí, giráis 90º y recorréis, alejándoos, esa misma distancia. Enterraremos el tesoro en el punto medio entre los dos. ¡Como os equivoquéis, os cortaré las piernas!

Años después, los piratas quisieron recuperar el tesoro y volvieron a la isla. Sin embargo, la piedra había desaparecido. Cuenta la leyenda que, afortunadamente, el capitán conocía el teorema de Bottema y en pocos minutos señaló el lugar exacto donde estaba enterrado el tesoro.

Solución a cinco circunferencias

Fase Comarcal de la Olimpiada Matemática de la Comunidad Valenciana 2016, nivel B
Se dirige a una edad de: 15/16

En el dibujo, podemos ver cinco circunferencias, una más grande que contiene a las otras, dos medianas y dos más pequeñas. Todas son tangentes a tres o cuatro de las otras.

Sabemos que el radio de las circunferencias medianas mide 1 metro. ¿Cuánto mide el radio de las pequeñas?

Continue reading Solución a cinco circunferencias

Cinco circunferencias

Fase Comarcal de la Olimpiada Matemática de la Comunidad Valenciana 2016, nivel B
Se dirige a una edad de: 15/16

En el dibujo, podemos ver cinco circunferencias, una más grande que contiene a las otras, dos medianas y dos más pequeñas. Todas son tangentes a tres o cuatro de las otras.

Sabemos que el radio de las circunferencias medianas mide 1 metro. ¿Cuánto mide el radio de las pequeñas?

Solución: Aquí

Solución a la consultora grande

Reto de selección para el Mathcamp 2017
Se dirige a una edad de: 13-18
Autor: Bill Kuszmaul

La doctora Grande es una consultora matemática que se especializa en números grandes. Inicia su negocio con una lista de 100 clientes ordenados en orden de importancia (el 1 es el más importante). Cada día, Grande tiene tiempo de visitar sólo a uno de sus clientes.

Un cliente se siente insatisfecho si Grande aún no le ha visitado, o si Grande ha visitado a alguien menos importante desde la última vez que le visitó. Cada día, Grande visita al cliente más importante que se siente insatisfecho. El primer día, Grande visita al cliente 1, el segundo día, al cliente 2, el tercer día, al cliente 1, y así sucesivamente.

Cuando ninguno de los clientes se sienta insatisfecho, la doctora Grande podrá, por fin, retirarse.

(a) Prueba que la doctora Grande podrá retirarse, eventualmente, algún día.

(b) A lo largo de la carrera de la doctora Grande ¿cuántos días se despierta insatisfecho el cliente que ocupa la posición n-ésima de la lista?

(c) Describe de forma clara el conjunto de clientes que se despiertan insatisfechos en el n-ésimo día de la carrera de la doctora Grande.

Continue reading Solución a la consultora grande

La consultora grande

Reto de selección para el Mathcamp 2017
Se dirige a una edad de: 13-18
Autor: Bill Kuszmaul

La doctora Grande es una consultora matemática que se especializa en números grandes. Inicia su negocio con una lista de 100 clientes ordenados en orden de importancia (el 1 es el más importante). Cada día, Grande tiene tiempo de visitar sólo a uno de sus clientes.

Un cliente se siente insatisfecho si Grande aún no le ha visitado, o si Grande ha visitado a alguien menos importante desde la última vez que le visitó. Cada día, Grande visita al cliente más importante que se siente insatisfecho. El primer día, Grande visita al cliente 1, el segundo día, al cliente 2, el tercer día, al cliente 1, y así sucesivamente.

Cuando ninguno de los clientes se sienta insatisfecho, la doctora Grande podrá, por fin, retirarse.

(a) Prueba que la doctora Grande podrá retirarse, eventualmente, algún día.

(b) A lo largo de la carrera de la doctora Grande ¿cuántos días se despierta insatisfecho el cliente que ocupa la posición n-ésima de la lista?

(c) Describe de forma clara el conjunto de clientes que se despiertan insatisfechos en el n-ésimo día de la carrera de la doctora Grande.

Solución: Aquí

La circunferencia de los nueve puntos

La circunferencia de los nueve puntos asociada a un triángulo está definida por los puntos medios de los lados, los puntos de corte de las alturas y los puntos medios de los segmentos que unen el ortocentro con los vértices. Esta circunferencia es tangente exterior a las tres circunferencias exinscritas y la circunferencia inscrita es tangente interior a ella. En la escuela alemana se conoce como la circunferencia de Feuerbach, mientras que en la escuela francesa se suele llamar circunferencia de Euler.