¿Dividir entre 0 da infinito?

Es frecuente escuchar a gente decir que el resultado de dividir entre 0 es infinito.  Sin embargo, esto no es correcto: no se puede dividir entre 0 y, en los supuestos casos en que “se puede”, el resultado no sería siempre infinito.  A continuación, mostramos explicamos el por qué y el origen de este falso mito.

Se dice que el resultado es infinito porque cuanto más se acerca el divisor a 0, más grande es el resultado de la división. Por ejemplo,

  • 1 entre 2 es 0,5
  • 1 entre 1 es 1
  • 1 entre 0,5 es 2
  • 1 entre 0,3  es 3,3333…
  • 1 entre 0,1 es 10
  • 1 entre 0,01 es 100
  • 1 entre 0,001 es 1.000
  • 1 entre 0,0001 es 10.000

En el cálculo diferencial, dada una función y = f(x), el límite de dicha función en el punto x = a se denota por

Mostramos algunos ejemplos de contradicciones que se obtienen al asumir que se puede dividir entre 0. También, hablamos sobre el falso mito de que dividir entre cero tiene resultado infinito y su origen. Secundaria. Bachillerato. Matemáticas.

Y puede verse como el número al que se aproxima la función y = f(x) cuando x se aproxima a x = a.

 

Por ejemplo, consideremos la función f(x) = 2/x² cuya gráfica es la siguiente:

Mostramos algunos ejemplos de contradicciones que se obtienen al asumir que se puede dividir entre 0. También, hablamos sobre el falso mito de que dividir entre cero tiene resultado infinito y su origen. Secundaria. Bachillerato. Matemáticas.

Observando la gráfica se aprecia claramente que cuando x se aproxima a  0 los valores y = f(x) crecen mucho. Por ejemplo,

Mostramos algunos ejemplos de contradicciones que se obtienen al asumir que se puede dividir entre 0. También, hablamos sobre el falso mito de que dividir entre cero tiene resultado infinito y su origen. Secundaria. Bachillerato. Matemáticas.

La función y = f(x) crece infinitamente cuando x se aproxima a 0, por lo que se dice que la función tiene límite infinito:

Mostramos algunos ejemplos de contradicciones que se obtienen al asumir que se puede dividir entre 0. También, hablamos sobre el falso mito de que dividir entre cero tiene resultado infinito y su origen. Secundaria. Bachillerato. Matemáticas.

 

El cálculo de límites a veces resulta un poco complicado, razón por la que se utilizan ciertas reglas que SÓLO tienen sentido cuando trabajamos con límites. Una de estas reglas es que un número distinto de 0 dividido entre 0 es infinito. Por ejemplo, usamos esta regla para calcular el límite anterior:

Mostramos algunos ejemplos de contradicciones que se obtienen al asumir que se puede dividir entre 0. También, hablamos sobre el falso mito de que dividir entre cero tiene resultado infinito y su origen. Secundaria. Bachillerato. Matemáticas.

Nota: técnicamente, la igualdad anterior no es correcta (por eso se escribe en rojo).

 

Veamos otro ejemplo:

Mostramos algunos ejemplos de contradicciones que se obtienen al asumir que se puede dividir entre 0. También, hablamos sobre el falso mito de que dividir entre cero tiene resultado infinito y su origen. Secundaria. Bachillerato. Matemáticas.

Es importante remarcar que esta regla exige que sea un número DISTINTO de 0 dividido entre 0, ya que 0/0 es una indeterminación (indeterminación 0/0) que en cada límite puede tener un resultado distinto.

Por ejemplo,

Mostramos algunos ejemplos de contradicciones que se obtienen al asumir que se puede dividir entre 0. También, hablamos sobre el falso mito de que dividir entre cero tiene resultado infinito y su origen. Secundaria. Bachillerato. Matemáticas.

Y, sin embargo, si sustituimos x = 0 en los límites, tenemos la fracción 0/0:

Mostramos algunos ejemplos de contradicciones que se obtienen al asumir que se puede dividir entre 0. También, hablamos sobre el falso mito de que dividir entre cero tiene resultado infinito y su origen. Secundaria. Bachillerato. Matemáticas.

 

Conclusión

Como conclusión, el resultado de dividir entre cero no es infinito. De hecho, ni siquiera está permitida la operación “dividido entre 0”, como hemos visto. Ahora bien, en el cálculo diferencial se utiliza la regla “un número entre 0 es infinito” sólo para referirse a que el resultado de dividir entre números cercanos a cero es un número muy grande.

Más ejemplos y temas relacionados: 

 

Encontrar la parábola a partir de su gráfica

Observando la gráfica de una parábola podemos obtener la siguiente información:

  • Las coordenadas del vértice.
  • Las coordenadas de 3 puntos distintos de la gráfica.
  • Los puntos de corte con el eje abscisas.

Esta información es suficiente para hallar la ecuación de una parábola, la cual tiene la forma

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

siendo a ≠ 0.

Ahora, recordamos algunos conceptos que nos ayudarán a obtener los coeficientes a, b y c a partir de la gráfica de la parábola.

Vértice

Todas las parábolas tienen forma de  (si a>0) o de  (si a<0). En cualquier caso, el punto más alto o máximo (si a>0) o el punto más bajo o mínimo (si a<0) de la parábola es el punto cuya primera coordenada es

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Ejemplo de una parábola con forma de  (verde) y otra con forma de  (azul):

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Raíces

Los puntos (α, 0) de la parábola cortan al eje de abscisas. Una parábola puede tener 1, 2 o ningún punto de corte con este eje. Se pueden dar 3 casos.

Caso 1:

La parábola tiene dos raíces (reales) distintas: α y β. Entonces, se cumple la siguiente igualdad:

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Caso 2:

La parábola tiene una única raíz (real): α. Entonces, se cumple que

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Caso 3:

La parábola no tiene raíces. En este caso, no podemos usar las raíces para encontrar la ecuación.

Obtener la ecuación

Una forma de obtener la ecuación de la parábola es hacerlo resolviendo un sistema de ecuaciones lineales a partir de 3 puntos distintos de la parábola. Sin embargo, este método puede ser engorroso, así que es preferible utilizar las propiedades vistas anteriormente: coordenadas del vértice, puntos de corte, etc.

Ejemplo 1: encontrar la ecuación de la parábola que corta al eje de las abscisas en los puntos (1, 0) y (3, 0) y que pasa al eje de ordenadas en el punto (0, 9).

De los puntos de corte con el eje de abscisas sabemos que las raíces de la función parabólica son x = 1 y x = 3. Por tanto, la ecuación de la parábola es

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Falta conocer el coeficiente , pero podemos hallarlo sabiendo que la parábola pasa por el punto (0, 9). Sólo tenemos que sustituir las coordenadas:

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Por tanto, la ecuación de la parábola es

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

O bien, si calculamos los productos,

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Gráfica:

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Ejemplo 2: hallar la ecuación de la parábola que tiene el vértice en el punto (1, 1) y que pasa por el punto (0, -3).

Sabemos que la primera coordenada del vértice es

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Por tanto, como el vértice está en (1, 1), tenemos

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Por otro lado, podemos sustituir las coordenadas del punto (0, -3) en la ecuación general de la parábola:

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Sustituimos  y n la ecuación:

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Nos falta hallar el coeficiente , pero también podemos sustituir las coordenadas del vértice (1, 1) en la ecuación:

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Luego la ecuación de la parábola es

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Gráfica:

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Más ejemplos y temas relacionados:

¿Existen funciones que no cortan los ejes de coordenadas?

Dada una función y = f(x), los puntos de su gráfica son (a, b) tal que b = f(a).

Eje vertical, Y

El posible punto que corta al eje vertical es (0, f(0)). Sin embargo, puede darse el caso de que x = 0 no sea un punto del dominio de y = f(x) (porque no existe la imagen de 0). Esto ocurre, por ejemplo, con la función f(x) = 1/x:

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.

 

Eje horizontal, X

Los puntos que cortan al eje vertical son (a, 0) tales que f(a) = 0. Para hallar dichos puntos, sólo hay que resolver la ecuación f(x) = 0. Si dicha ecuación no tiene solución, entonces no hay punto de corte. Esto ocurre, por ejemplo, con la función f(x) = -x2 +2x -2

Problemas resueltos de rectas y de parábolas: encontrar rectas y parabólas con determinada pendiente, vértice, que pasen por determinados puntos, etc. Problemas para secundaria.

Función sin puntos de corte

Una función que no corte a los ejes debe cumplir las siguientes condiciones:

  • No existe imagen de x = 0.
  • La ecuación f(x) = 0 no tiene soluciones (reales).

La función f(x) = 1/x cumple estas condiciones y es un ejemplo de función que no corta a los ejes de coordenadas. Otros ejemplos:

    • f(x) = 1/x2
    • f(x) = 1 + |x|
    • f(x) = 1 + √x

Más ejemplos y temas relacionados:

¿Por qué no puede haber más de un punto de corte con el eje vertical?

Dada una función y = f(x), los puntos de su gráfica son (a, b) tal que b = f(a).

Como el eje de coordenadas vertical, Y, es el conjunto de puntos (0, y), entonces los puntos de la gráfica de y = f(x) que cortan a dicho eje son (0, f(0)).

Recordad que un número sólo puede tener una imagen y, como consecuencia, sólo hay una imagen de 0, f(0), y, por ende, un único punto (0, f(0)).

Ahora bien, puede darse el caso de que no existe la imagen de 0 por no ser éste un punto de su dominio. Por ejemplo, la función f(x) = 1/x no está definida para x = 0, puesto que no se puede dividir entre 0, por lo que dicha gráfica nunca corta al eje Y:

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.

 

No ocurre lo mismo con el eje horizontal puesto que los puntos de la gráfica de y = f(x) que lo cortan son (a, 0) tales que f(a) = 0.  Sí puede haber diferentes puntos del dominio cuya imagen sea 0 y podemos hallarlos resolviendo la ecuación f(x) = 0.

Por ejemplo, la gráfica de la función f(x) = x3-3x corta al eje vertical en tres puntos distintos:

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.

Más información y temas relacionados:

 

Pendiente de una recta

Las rectas son las funciones que tienen la siguiente forma:

Explicamos cuándo dos rectas son paralelas o perpendiculares atendiendo a su pendiente. Con ejemplos y problemas resueltos paso a paso. ESO. Secundaria. Geometría plana. Matemáticas.

donde m y n son números constantes:

  • m es la pendiente de la recta
  • n es la ordenada en el origen

La pendiente de una recta tiene cierta importancia puesto que nos informa de algunas propiedades de la recta. Por ejemplo,

  • Si es positiva, la recta es creciente. Si es negativa, es decreciente.
  • Si la pendiente es m = 0, entonces se trata de una recta constante, es decir, una recta horizontal paralela al eje de las abscisas.
  • Cuanto mayor es |m|, mayor es el crecimiento/decrecimiento de la recta, es decir, cuanto mayor es |m|, más inclinada es la recta.
  • Dos rectas con la misma pendiente son paralelas.

Ejemplo 1: gráficas de las rectas y = 2x +  1  (azul) e y = x +  1  (rojo)

Explicamos cuándo dos rectas son paralelas o perpendiculares atendiendo a su pendiente. Con ejemplos y problemas resueltos paso a paso. ESO. Secundaria. Geometría plana. Matemáticas.

Como las dos pendientes (m = 2 y m = 1) son positivas, las rectas son crecientes. Además, la que tiene mayor pendiente (azul) crece más rápido (está más inclinada).

Ejemplo 2: gráficas de las rectas y = 2x +  1  (azul) e y = 2x –  1  (rojo)

Explicamos cuándo dos rectas son paralelas o perpendiculares atendiendo a su pendiente. Con ejemplos y problemas resueltos paso a paso. ESO. Secundaria. Geometría plana. Matemáticas.

Como ambas rectas tienen la misma pendiente (m = 2), son paralelas. 

 

Más ejemplos y temas relacionados:

Vértice de una parábola

Recordad que la función parábola tiene la forma

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

siendo a ≠ 0.

  • Si a>0, la parábola tiene forma de U.
  • Si a<0, la parábola tiene forma de .

Ejemplo: gráficas de las parábolas y = x2-1 (azul) e y = 2 -2x2 (naranja)

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

En rojo se representan los puntos donde las dos parábolas se cortan.

Vértice de la parábola

El vértice de la parábola es el punto más bajo de la misma (si la parábola tiene forma de U) o el punto más alto (si la parábola tiene forma de ).

La primera coordenada del vértice de la parábola f(x) = ax2 + bx + c es

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Y la segunda coordenada es su imagen:

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Ejemplo: calculamos el vértice de la parábola f(x) = -2x2 + 3:

Identificamos los coeficientes:

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Como a es negativo, la parábola tiene forma de . El vértice es un máximo.

La primera coordenada del vértice es

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Calculamos la segunda coordenada:

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Por tanto, el vértice es el punto

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Gráfica:

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Más ejemplos y temas relacionados:

Teorema de Rolle

En este post vamos a ver un importante teorema del cálculo diferencial: el teorema de Rolle.

Teorema de Rolle:

Sea f una función continua en el intervalo cerrado [a, b], derivable en el intervalo abierto ]a, b[ y con f(a) = f(b). Entonces, existe al menos un punto c del intervalo abierto ]a, b[ que anula a la derivada de f, es decir, f'(c)=0.

Interpretación:

vida y obra de Michel Rolle

Como la función es continua y f(a) = f(b), entonces hay dos opciones:

  • La función es constante, es decir, f(x) = f(a) = f(b). En este caso, sabemos que la derivada de f se anula.
  • La función no es constante y, por tanto, presenta algún máximo o mínimo. En estos puntos (los máximos o mínimos) es donde se anula la derivada.

 

Más información y temas relacionados:

Cálculo de áreas (regla de Barrow)

La regla de Barrow

Sea F(x) una función primitiva de la función f(x), es decir, la derivada de F(x) es f(x). Entonces, la regla de Barrow establece que la integral definida de f(x) en el intervalo [a, b] es F(b)-F(a):

 

Ejemplo: la función F(x) = x2 es una primitiva de la función f(x) = 2x. Por tanto, por la regla de Barrow, la integral definida de f(x) en el intervalo [0, 1] es

F(1) – F(0) = 12 – 02 = 1

Aplicaciones

La gran aplicación de la regla de Barrow es el cálculo del área que encierra la gráfica de una función con el eje de abscisas.

Supongamos, para simplificar los cálculos, que la función f(x) tiene su gráfica por encima del eje de abscisas para a ≤ x ≤ b:

Issac Barrow (1630-1677): biografía, interpretación geométrica de la integral definida y demostración de la Regla de Barrow y del Teorema fundamental del cálculo

Entonces, el área de la región encerrada entre la gráfica de f(x) y el eje de abscisas en el intervalo [a, b] es la integral definida de f(x) en [a, b], que por la regla de Barrow sabemos que es F(b)-F(a).

En el ejemplo anterior hemos calculado que el área encerrada por la gráfica de f(x) = 2x en [0, 1] es 1 .

 

Más información y temas relacionados:

Gráfica de una función

La gráfica de una función matemática es su representación gráfica, la cual nos permite observar el comportamiento o propiedades de la misma. También, podemos obtener la imagen de un número a partir de la gráfica.

Recordamos que si y = f(x) es una función, entonces la imagen de un número a es b = f(a).  Por ejemplo, consideremos la función f(x) = 2x + 1. Para calcular la imagen de un número, tenemos que sustituir x por dicho número:

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.

Es decir,

  • La imagen de 0 es 1.
  • La imagen de 1 es 3.
  • La imagen de 2 es 5.

Si a es un número y b es su imagen, es decir, b = f(a), entonces el punto (a, b) es un punto de la gráfica de f. Como hemos calculado varias imágenes, tenemos varios puntos:

  • f(0) = 1 → tenemos el punto (0, 1).
  • f(1) = 3 → tenemos el punto (1, 3).
  • f(2) = 5 → tenemos el punto (2, 5).

Si representamos estos puntos en el plano y los unimos, tenemos la gráfica de la función:

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.

La gráfica de esta función es una recta.

Observando la gráfica, podemos deducir, por ejemplo, que la imagen de 3 es 7, es decir, f(3) = 7, ya que el punto (3, 7) está en la gráfica de f.

Como decíamos anteriormente, la gráfica permite observar el comportamiento de la función. Por ejemplo:

  • La gráfica de esta función es una recta, pero las gráficas de las funciones también pueden ser curvas, por ejemplo.
  • La recta es creciente (vista de izquierda a derecha), lo que significa que si a < b, entonces f(a) < f(b).
  • Los puntos de corte con los ejes. Por ejemplo, la gráfica corta al eje Y en el punto (0, 1).
  • Es una función continua, lo que significa que puede dibujarse de un solo trazo, lo cual no siempre es así.

Otros ejemplos de gráficas

La gráfica de la función f(x) = x2 es una parábola (una curva):

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.

La gráfica de la función f(x) = 1/x NO es continua (tiene un salto):

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.
La gráfica de la función f(x) = x3 -3x es creciente, decreciente y creciente (de izquierda a derecha):

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.
La gráfica de la función f(x) = cos(x) es periódica (se repite):

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.Más información en

Otros temas relacionados:

Teorema del sándwich o del emparedado

El teorema del sándwich establece que si una función f(x) se encuentra entre dos funciones g(x) y h(x), es decir,

Y los límites de g(x) y de h(x) existen y son iguales, entonces el límite de f(x) también existe y coincide con el de g(x) y el de h(x).

 

Veamos un par de ejemplos de la importancia del teorema del sándwich en la práctica demostrando límites.

Ejemplo 1

el límite de sin(x)/x es 0

En principio, este límite no es sencillo de calcular, puesto que la función seno es una función periódica que toma valores en el intervalo [-1, 1], por lo que el límite cuando x tiende a infinito es indeterminado.

Así, pues, vamos a acotar la función sin(x)/x entre dos funciones con límite.

Como el seno toma valores entre -1 y 1, podemos escribir

Dividimos entre x:

Ya tenemos la función acotada entre dos funciones (siempre que x sea mayor que 0) y estas funciones tienen límite cuando x tiende a infinito y es 0.

Por tanto, la función sin(x)/x también tiene límite y es 0:

Ejemplo 2 

El coseno es una función periódica con valores en el intervalo [-1, 1], aunque existe su límite cuando x tiende a 0 y es cos(0) = 1. Sin embargo, en la función del límite el argumento del coseno es 1/x, el cual tiende a infinito cuando x tiende a 0. Además, el coseno del límite está además multiplicado por x.

A pesar de todo esto, el límite es sencillo de calcular mediante el teorema del sándwich. Acotamos el coseno:

Supongamos que x>0, entonces

Por el teorema del emparedado,

Enunciamos y demostramos el teorema del emparedado para funciones, series y sucesiones. Límite de una función (serie o sucesión) comprendida entre otras dos. Ejemplos de aplicación. Teorema del emparedado, del sándwich, de encaje o del bocadillo. Bachillerato y Universidad. Matemáticas. Análisis de una variable.

Ahora, hacemos lo mismo suponiendo que x<0:

Enunciamos y demostramos el teorema del emparedado para funciones, series y sucesiones. Límite de una función (serie o sucesión) comprendida entre otras dos. Ejemplos de aplicación. Teorema del emparedado, del sándwich, de encaje o del bocadillo. Bachillerato y Universidad. Matemáticas. Análisis de una variable.

Por el teorema del emparedado,

Enunciamos y demostramos el teorema del emparedado para funciones, series y sucesiones. Límite de una función (serie o sucesión) comprendida entre otras dos. Ejemplos de aplicación. Teorema del emparedado, del sándwich, de encaje o del bocadillo. Bachillerato y Universidad. Matemáticas. Análisis de una variable.

Como los límites laterales coinciden,

Enunciamos y demostramos el teorema del emparedado para funciones, series y sucesiones. Límite de una función (serie o sucesión) comprendida entre otras dos. Ejemplos de aplicación. Teorema del emparedado, del sándwich, de encaje o del bocadillo. Bachillerato y Universidad. Matemáticas. Análisis de una variable.

Gráfica de la función:

Enunciamos y demostramos el teorema del emparedado para funciones, series y sucesiones. Límite de una función (serie o sucesión) comprendida entre otras dos. Ejemplos de aplicación. Teorema del emparedado, del sándwich, de encaje o del bocadillo. Bachillerato y Universidad. Matemáticas. Análisis de una variable.

Más ejemplos en Teorema del emparedado o del sándwich.

Otros temas relacionados: