¿Existen funciones que no cortan los ejes de coordenadas?

Dada una función y = f(x), los puntos de su gráfica son (a, b) tal que b = f(a).

Eje vertical, Y

El posible punto que corta al eje vertical es (0, f(0)). Sin embargo, puede darse el caso de que x = 0 no sea un punto del dominio de y = f(x) (porque no existe la imagen de 0). Esto ocurre, por ejemplo, con la función f(x) = 1/x:

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.

 

Eje horizontal, X

Los puntos que cortan al eje vertical son (a, 0) tales que f(a) = 0. Para hallar dichos puntos, sólo hay que resolver la ecuación f(x) = 0. Si dicha ecuación no tiene solución, entonces no hay punto de corte. Esto ocurre, por ejemplo, con la función f(x) = -x2 +2x -2

Problemas resueltos de rectas y de parábolas: encontrar rectas y parabólas con determinada pendiente, vértice, que pasen por determinados puntos, etc. Problemas para secundaria.

Función sin puntos de corte

Una función que no corte a los ejes debe cumplir las siguientes condiciones:

  • No existe imagen de x = 0.
  • La ecuación f(x) = 0 no tiene soluciones (reales).

La función f(x) = 1/x cumple estas condiciones y es un ejemplo de función que no corta a los ejes de coordenadas. Otros ejemplos:

    • f(x) = 1/x2
    • f(x) = 1 + |x|
    • f(x) = 1 + √x

Más ejemplos y temas relacionados:

¿Por qué no puede haber más de un punto de corte con el eje vertical?

Dada una función y = f(x), los puntos de su gráfica son (a, b) tal que b = f(a).

Como el eje de coordenadas vertical, Y, es el conjunto de puntos (0, y), entonces los puntos de la gráfica de y = f(x) que cortan a dicho eje son (0, f(0)).

Recordad que un número sólo puede tener una imagen y, como consecuencia, sólo hay una imagen de 0, f(0), y, por ende, un único punto (0, f(0)).

Ahora bien, puede darse el caso de que no existe la imagen de 0 por no ser éste un punto de su dominio. Por ejemplo, la función f(x) = 1/x no está definida para x = 0, puesto que no se puede dividir entre 0, por lo que dicha gráfica nunca corta al eje Y:

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.

 

No ocurre lo mismo con el eje horizontal puesto que los puntos de la gráfica de y = f(x) que lo cortan son (a, 0) tales que f(a) = 0.  Sí puede haber diferentes puntos del dominio cuya imagen sea 0 y podemos hallarlos resolviendo la ecuación f(x) = 0.

Por ejemplo, la gráfica de la función f(x) = x3-3x corta al eje vertical en tres puntos distintos:

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.

Más información y temas relacionados:

 

Pendiente de una recta

Las rectas son las funciones que tienen la siguiente forma:

Explicamos cuándo dos rectas son paralelas o perpendiculares atendiendo a su pendiente. Con ejemplos y problemas resueltos paso a paso. ESO. Secundaria. Geometría plana. Matemáticas.

donde m y n son números constantes:

  • m es la pendiente de la recta
  • n es la ordenada en el origen

La pendiente de una recta tiene cierta importancia puesto que nos informa de algunas propiedades de la recta. Por ejemplo,

  • Si es positiva, la recta es creciente. Si es negativa, es decreciente.
  • Si la pendiente es m = 0, entonces se trata de una recta constante, es decir, una recta horizontal paralela al eje de las abscisas.
  • Cuanto mayor es |m|, mayor es el crecimiento/decrecimiento de la recta, es decir, cuanto mayor es |m|, más inclinada es la recta.
  • Dos rectas con la misma pendiente son paralelas.

Ejemplo 1: gráficas de las rectas y = 2x +  1  (azul) e y = x +  1  (rojo)

Explicamos cuándo dos rectas son paralelas o perpendiculares atendiendo a su pendiente. Con ejemplos y problemas resueltos paso a paso. ESO. Secundaria. Geometría plana. Matemáticas.

Como las dos pendientes (m = 2 y m = 1) son positivas, las rectas son crecientes. Además, la que tiene mayor pendiente (azul) crece más rápido (está más inclinada).

Ejemplo 2: gráficas de las rectas y = 2x +  1  (azul) e y = 2x –  1  (rojo)

Explicamos cuándo dos rectas son paralelas o perpendiculares atendiendo a su pendiente. Con ejemplos y problemas resueltos paso a paso. ESO. Secundaria. Geometría plana. Matemáticas.

Como ambas rectas tienen la misma pendiente (m = 2), son paralelas. 

 

Más ejemplos y temas relacionados:

Vértice de una parábola

Recordad que la función parábola tiene la forma

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

siendo a ≠ 0.

  • Si a>0, la parábola tiene forma de U.
  • Si a<0, la parábola tiene forma de .

Ejemplo: gráficas de las parábolas y = x2-1 (azul) e y = 2 -2x2 (naranja)

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

En rojo se representan los puntos donde las dos parábolas se cortan.

Vértice de la parábola

El vértice de la parábola es el punto más bajo de la misma (si la parábola tiene forma de U) o el punto más alto (si la parábola tiene forma de ).

La primera coordenada del vértice de la parábola f(x) = ax2 + bx + c es

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Y la segunda coordenada es su imagen:

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Ejemplo: calculamos el vértice de la parábola f(x) = -2x2 + 3:

Identificamos los coeficientes:

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Como a es negativo, la parábola tiene forma de . El vértice es un máximo.

La primera coordenada del vértice es

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Calculamos la segunda coordenada:

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Por tanto, el vértice es el punto

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Gráfica:

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Más ejemplos y temas relacionados:

Teorema de Rolle

En este post vamos a ver un importante teorema del cálculo diferencial: el teorema de Rolle.

Teorema de Rolle:

Sea f una función continua en el intervalo cerrado [a, b], derivable en el intervalo abierto ]a, b[ y con f(a) = f(b). Entonces, existe al menos un punto c del intervalo abierto ]a, b[ que anula a la derivada de f, es decir, f'(c)=0.

Interpretación:

vida y obra de Michel Rolle

Como la función es continua y f(a) = f(b), entonces hay dos opciones:

  • La función es constante, es decir, f(x) = f(a) = f(b). En este caso, sabemos que la derivada de f se anula.
  • La función no es constante y, por tanto, presenta algún máximo o mínimo. En estos puntos (los máximos o mínimos) es donde se anula la derivada.

 

Más información y temas relacionados:

Cálculo de áreas (regla de Barrow)

La regla de Barrow

Sea F(x) una función primitiva de la función f(x), es decir, la derivada de F(x) es f(x). Entonces, la regla de Barrow establece que la integral definida de f(x) en el intervalo [a, b] es F(b)-F(a):

 

Ejemplo: la función F(x) = x2 es una primitiva de la función f(x) = 2x. Por tanto, por la regla de Barrow, la integral definida de f(x) en el intervalo [0, 1] es

F(1) – F(0) = 12 – 02 = 1

Aplicaciones

La gran aplicación de la regla de Barrow es el cálculo del área que encierra la gráfica de una función con el eje de abscisas.

Supongamos, para simplificar los cálculos, que la función f(x) tiene su gráfica por encima del eje de abscisas para a ≤ x ≤ b:

Issac Barrow (1630-1677): biografía, interpretación geométrica de la integral definida y demostración de la Regla de Barrow y del Teorema fundamental del cálculo

Entonces, el área de la región encerrada entre la gráfica de f(x) y el eje de abscisas en el intervalo [a, b] es la integral definida de f(x) en [a, b], que por la regla de Barrow sabemos que es F(b)-F(a).

En el ejemplo anterior hemos calculado que el área encerrada por la gráfica de f(x) = 2x en [0, 1] es 1 .

 

Más información y temas relacionados:

Gráfica de una función

La gráfica de una función matemática es su representación gráfica, la cual nos permite observar el comportamiento o propiedades de la misma. También, podemos obtener la imagen de un número a partir de la gráfica.

Recordamos que si y = f(x) es una función, entonces la imagen de un número a es b = f(a).  Por ejemplo, consideremos la función f(x) = 2x + 1. Para calcular la imagen de un número, tenemos que sustituir x por dicho número:

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.

Es decir,

  • La imagen de 0 es 1.
  • La imagen de 1 es 3.
  • La imagen de 2 es 5.

Si a es un número y b es su imagen, es decir, b = f(a), entonces el punto (a, b) es un punto de la gráfica de f. Como hemos calculado varias imágenes, tenemos varios puntos:

  • f(0) = 1 → tenemos el punto (0, 1).
  • f(1) = 3 → tenemos el punto (1, 3).
  • f(2) = 5 → tenemos el punto (2, 5).

Si representamos estos puntos en el plano y los unimos, tenemos la gráfica de la función:

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.

La gráfica de esta función es una recta.

Observando la gráfica, podemos deducir, por ejemplo, que la imagen de 3 es 7, es decir, f(3) = 7, ya que el punto (3, 7) está en la gráfica de f.

Como decíamos anteriormente, la gráfica permite observar el comportamiento de la función. Por ejemplo:

  • La gráfica de esta función es una recta, pero las gráficas de las funciones también pueden ser curvas, por ejemplo.
  • La recta es creciente (vista de izquierda a derecha), lo que significa que si a < b, entonces f(a) < f(b).
  • Los puntos de corte con los ejes. Por ejemplo, la gráfica corta al eje Y en el punto (0, 1).
  • Es una función continua, lo que significa que puede dibujarse de un solo trazo, lo cual no siempre es así.

Otros ejemplos de gráficas

La gráfica de la función f(x) = x2 es una parábola (una curva):

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.

La gráfica de la función f(x) = 1/x NO es continua (tiene un salto):

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.
La gráfica de la función f(x) = x3 -3x es creciente, decreciente y creciente (de izquierda a derecha):

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.
La gráfica de la función f(x) = cos(x) es periódica (se repite):

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.Más información en

Otros temas relacionados:

Teorema del sándwich o del emparedado

El teorema del sándwich establece que si una función f(x) se encuentra entre dos funciones g(x) y h(x), es decir,

Y los límites de g(x) y de h(x) existen y son iguales, entonces el límite de f(x) también existe y coincide con el de g(x) y el de h(x).

 

Veamos un par de ejemplos de la importancia del teorema del sándwich en la práctica demostrando límites.

Ejemplo 1

el límite de sin(x)/x es 0

En principio, este límite no es sencillo de calcular, puesto que la función seno es una función periódica que toma valores en el intervalo [-1, 1], por lo que el límite cuando x tiende a infinito es indeterminado.

Así, pues, vamos a acotar la función sin(x)/x entre dos funciones con límite.

Como el seno toma valores entre -1 y 1, podemos escribir

Dividimos entre x:

Ya tenemos la función acotada entre dos funciones (siempre que x sea mayor que 0) y estas funciones tienen límite cuando x tiende a infinito y es 0.

Por tanto, la función sin(x)/x también tiene límite y es 0:

Ejemplo 2 

El coseno es una función periódica con valores en el intervalo [-1, 1], aunque existe su límite cuando x tiende a 0 y es cos(0) = 1. Sin embargo, en la función del límite el argumento del coseno es 1/x, el cual tiende a infinito cuando x tiende a 0. Además, el coseno del límite está además multiplicado por x.

A pesar de todo esto, el límite es sencillo de calcular mediante el teorema del sándwich. Acotamos el coseno:

Supongamos que x>0, entonces

Por el teorema del emparedado,

Enunciamos y demostramos el teorema del emparedado para funciones, series y sucesiones. Límite de una función (serie o sucesión) comprendida entre otras dos. Ejemplos de aplicación. Teorema del emparedado, del sándwich, de encaje o del bocadillo. Bachillerato y Universidad. Matemáticas. Análisis de una variable.

Ahora, hacemos lo mismo suponiendo que x<0:

Enunciamos y demostramos el teorema del emparedado para funciones, series y sucesiones. Límite de una función (serie o sucesión) comprendida entre otras dos. Ejemplos de aplicación. Teorema del emparedado, del sándwich, de encaje o del bocadillo. Bachillerato y Universidad. Matemáticas. Análisis de una variable.

Por el teorema del emparedado,

Enunciamos y demostramos el teorema del emparedado para funciones, series y sucesiones. Límite de una función (serie o sucesión) comprendida entre otras dos. Ejemplos de aplicación. Teorema del emparedado, del sándwich, de encaje o del bocadillo. Bachillerato y Universidad. Matemáticas. Análisis de una variable.

Como los límites laterales coinciden,

Enunciamos y demostramos el teorema del emparedado para funciones, series y sucesiones. Límite de una función (serie o sucesión) comprendida entre otras dos. Ejemplos de aplicación. Teorema del emparedado, del sándwich, de encaje o del bocadillo. Bachillerato y Universidad. Matemáticas. Análisis de una variable.

Gráfica de la función:

Enunciamos y demostramos el teorema del emparedado para funciones, series y sucesiones. Límite de una función (serie o sucesión) comprendida entre otras dos. Ejemplos de aplicación. Teorema del emparedado, del sándwich, de encaje o del bocadillo. Bachillerato y Universidad. Matemáticas. Análisis de una variable.

Más ejemplos en Teorema del emparedado o del sándwich.

Otros temas relacionados:

Ejemplos de continuidad de funciones definidas a trozos

La continuidad de una función definida a trozos o por intervalos se estudia del mismo que una función normal, pero hay que tratar los puntos donde cambia la definición de la función como posibles puntos de discontinuidad. En estos puntos, tenemos que comprobar si los límites laterales coinciden.

Veamos algunos ejemplos.

Ejemplo 1

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

La función es continua en cada uno de los tres intervalos puesto que se tratan de polinomios. Los posibles candidatos a puntos de discontinuidad son los extremos de los intervalos: x=0 y x=1.

Calculamos los límites laterales en estos puntos:

Punto x=0

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

Punto x=1

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

El único punto de discontinuidad es x=0, ya que los límites laterales no coinciden.

Gráfica:

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

Ejemplo 2

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

  • En el intervalo x≤3, la función es racional. Tenemos que excluir el punto x=2 del dominio porque anula al denominador.
  • En el intervalo x>3, también es racional. El denominador se anula en x=3/2 <3, así que no hay que excluir ningún punto.

El dominio de la función es el conjunto de los reales excepto x=2.

Calculamos los límites laterales en el punto x=3:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Como no coinciden, la función no es continua en x=3.

La función es continua en todos los reales excepto en x=2 y x=3.

Gráfica:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Ejemplo 3

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

El dominio es el conjunto de los reales.

En cada intervalo (abierto) de definición, la función es continua. Tenemos que ver qué ocurre en los puntos x=2 y x=3.

Límites laterales en x=2:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Como los límites son distintos, no hay continuidad en x=2.

Límites laterales en x=3:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Como los límites son distintos, no hay continuidad en x=3.

Por tanto, la función es continua en el conjunto de los reales excepto en x=2 y x=3.

Gráfica:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Más ejemplos y temas relacionados: