Una función lineal es una función polinómica de primer grado. Es decir, tiene la siguiente forma
siendo m≠0.
- m es la pendiente de la función
- n es la ordenada (en el origen) de la función
La gráfica de una función lineal es siempre una recta.
Ejemplo:
La pendiente de la recta es m = 2 y la ordenada es n = -1.
Geométricamente, cuanto mayor es la pendiente, más inclinada es la recta. Es decir, más rápido crece la función.
- Si la pendiente es positiva, la función es creciente.
- Si la pendiente es negativa, la función es decreciente.
Ejemplo:
Rectas con pendientes 1, 2, 3 y -1:
Puntos de corte
Una función lineal siempre corta al eje Y en un punto. También, corta al eje X en un punto.
El punto de corte con el eje Y es el punto de la recta que tiene la primera coordenada igual a 0:
El punto de corte con el eje X es el punto de la recta que tiene 0 en la segunda coordenada. Se calcula igualando a 0 la función y resolviendo la ecuación obtenida.
Ejemplo:
Calculamos los puntos de corte de la función del ejemplo anterior,
Corte con el eje Y:
Es el punto
Observad que la segunda coordenada es la ordenada.
Corte con el eje X:
Es el punto
Función a partir de dos puntos
Si tenemos dos puntos de la recta, podemos calcular la expresión algebraica de la función. Sólo tenemos que sustituir las coordenadas de los puntos en la forma general de la función
y resolver el sistema de ecuaciones.
Enlaces con problemas de funciones:
- Dominio y recorrido (1)
- Dominio y recorrido (2)
- Funciones lineales
- Funciones cuadráticas
- Rectas y parábolas
- Funciones polinómicas
- Funciones definidas a trozos (1)
- Funciones definidas a trozos (2)
- Problemas de funciones (1)
- Problemas de funciones (2)
- Funciones continuas (1)
- Funciones continuas (2)
- Función inversa (1)
- Función inversa (2)
- Función inyectiva, sobreyectiva y biyectiva
- Asíntotas (1)
- Asíntotas (2)
- Máximos y mínimos (1)
- Máximos y mínimos (2)
- Reglas de derivación y de la cadena
- Criterio de la primera derivada
- Criterio de la segunda derivada
- Problemas de optimizar (1)
- Problemas de optimizar (2)
- Límites (1)
- Límites (2)
- Función par y función impar
- Cálculo de derivadas
- Teorema del emparedado