Límite de una fracción de polinomios

En el límite de un cociente de polinomios P(x)/Q(x) suele aparecer un cociente de infinitos (∞/∞).

Escribimos δP y δQ para referirnos al grado de los polinomios P y Q, respectivamente. Entonces,

Resolvemos más de 50 límites explicando el procedimiento, incluyendo indeterminaciones (cero dividido cero, infinito dividido infinito, cero por infinito, 1 elevado a infinito, cero elevado a cero, infinito elevado a cero e infinito menos infinito). Concepto de límite, definición formal, límites laterales, procedimientos, técnicas, reglas básicas. Cociente de polinomios cociente de exponenciales, cociente de raíces, resta de raíces, fórmula, comparación de funciones, gráficas. Bachillerato, Universidad, Bachiller, Matemáticas, Análisis de una variable real.

  • En el primer caso, el signo del infinito depende de los grados de los polinomios y de sus coeficientes.
  • En el tercer caso, p es el coeficiente director de P(x) y q es el de Q(x).

Ejemplo 1

Resolvemos más de 50 límites explicando el procedimiento, incluyendo indeterminaciones (cero dividido cero, infinito dividido infinito, cero por infinito, 1 elevado a infinito, cero elevado a cero, infinito elevado a cero e infinito menos infinito). Concepto de límite, definición formal, límites laterales, procedimientos, técnicas, reglas básicas. Cociente de polinomios cociente de exponenciales, cociente de raíces, resta de raíces, fórmula, comparación de funciones, gráficas. Bachillerato, Universidad, Bachiller, Matemáticas, Análisis de una variable real.

El límite es infinito porque el grado del numerador es mayor que el del denominador. Los coeficientes de los polinomios son positivos y el infinito del límite es positivo, por tanto, el límite es positivo.

Ejemplo 2

Resolvemos más de 50 límites explicando el procedimiento, incluyendo indeterminaciones (cero dividido cero, infinito dividido infinito, cero por infinito, 1 elevado a infinito, cero elevado a cero, infinito elevado a cero e infinito menos infinito). Concepto de límite, definición formal, límites laterales, procedimientos, técnicas, reglas básicas. Cociente de polinomios cociente de exponenciales, cociente de raíces, resta de raíces, fórmula, comparación de funciones, gráficas. Bachillerato, Universidad, Bachiller, Matemáticas, Análisis de una variable real.

Tenemos un cociente de polinomios de igual grado. Su límite es el cociente de sus coeficientes directores.

Ejemplo 3

Cálculo de límites (sin aplicar la regla de L'Hôpital ni infinitésimos equivalentes), con y sin indeterminaciones. Límites resueltos paso a paso. Límites para bachillerato y universidad. Análisis de una variable real. Matemáticas.

El límite es 0 porque el grado del denominador es mayor.

Ejemplo 4

Resolvemos más de 50 límites explicando el procedimiento, incluyendo indeterminaciones (cero dividido cero, infinito dividido infinito, cero por infinito, 1 elevado a infinito, cero elevado a cero, infinito elevado a cero e infinito menos infinito). Concepto de límite, definición formal, límites laterales, procedimientos, técnicas, reglas básicas. Cociente de polinomios cociente de exponenciales, cociente de raíces, resta de raíces, fórmula, comparación de funciones, gráficas. Bachillerato, Universidad, Bachiller, Matemáticas, Análisis de una variable real.

El límite es infinito porque el grado del numerador es mayor.  Los coeficientes son positivos y el infinito del límite es negativo. Como el grado del numerador es impar y el del numerador es par, el resultado es negativo (negativo entre positivo).

Ejemplo 5

Resolvemos más de 50 límites explicando el procedimiento, incluyendo indeterminaciones (cero dividido cero, infinito dividido infinito, cero por infinito, 1 elevado a infinito, cero elevado a cero, infinito elevado a cero e infinito menos infinito). Concepto de límite, definición formal, límites laterales, procedimientos, técnicas, reglas básicas. Cociente de polinomios cociente de exponenciales, cociente de raíces, resta de raíces, fórmula, comparación de funciones, gráficas. Bachillerato, Universidad, Bachiller, Matemáticas, Análisis de una variable real.

El límite es infinito porque el grado del numerador es mayor.  El infinito del límite es negativo. Al cuadrado es positivo. Al cubo es negativo, pero tiene el coeficiente negativo. Por tanto, tenemos positivo entre positivo.

Ejemplo 6

Resolvemos más de 50 límites explicando el procedimiento, incluyendo indeterminaciones (cero dividido cero, infinito dividido infinito, cero por infinito, 1 elevado a infinito, cero elevado a cero, infinito elevado a cero e infinito menos infinito). Concepto de límite, definición formal, límites laterales, procedimientos, técnicas, reglas básicas. Cociente de polinomios cociente de exponenciales, cociente de raíces, resta de raíces, fórmula, comparación de funciones, gráficas. Bachillerato, Universidad, Bachiller, Matemáticas, Análisis de una variable real.

El límite es infinito porque el grado del numerador es mayor.  Positivo entre negativo, así que el resultado es negativo.

 

Más ejemplos y temas de límites:

 

Ejemplos de continuidad de funciones definidas a trozos

La continuidad de una función definida a trozos o por intervalos se estudia del mismo que una función normal, pero hay que tratar los puntos donde cambia la definición de la función como posibles puntos de discontinuidad. En estos puntos, tenemos que comprobar si los límites laterales coinciden.

Veamos algunos ejemplos.

Ejemplo 1

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

La función es continua en cada uno de los tres intervalos puesto que se tratan de polinomios. Los posibles candidatos a puntos de discontinuidad son los extremos de los intervalos: x=0 y x=1.

Calculamos los límites laterales en estos puntos:

Punto x=0

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

Punto x=1

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

El único punto de discontinuidad es x=0, ya que los límites laterales no coinciden.

Gráfica:

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

Ejemplo 2

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

  • En el intervalo x≤3, la función es racional. Tenemos que excluir el punto x=2 del dominio porque anula al denominador.
  • En el intervalo x>3, también es racional. El denominador se anula en x=3/2 <3, así que no hay que excluir ningún punto.

El dominio de la función es el conjunto de los reales excepto x=2.

Calculamos los límites laterales en el punto x=3:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Como no coinciden, la función no es continua en x=3.

La función es continua en todos los reales excepto en x=2 y x=3.

Gráfica:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Ejemplo 3

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

El dominio es el conjunto de los reales.

En cada intervalo (abierto) de definición, la función es continua. Tenemos que ver qué ocurre en los puntos x=2 y x=3.

Límites laterales en x=2:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Como los límites son distintos, no hay continuidad en x=2.

Límites laterales en x=3:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Como los límites son distintos, no hay continuidad en x=3.

Por tanto, la función es continua en el conjunto de los reales excepto en x=2 y x=3.

Gráfica:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Más ejemplos en

Ejemplos de continuidad de funciones con raíces

Vimos en continuidad de funciones que una una función con una raíz cuadrada es continua en los reales para los que el radicando es no negativo. A continuación vamos a ver algunos ejemplos.

Ejemplo 1

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

Tenemos que buscar los puntos para los cuales el radicando es es positivo.

Igualamos el radicando a 0 y resolvemos la ecuación:

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

Estas dos soluciones dividen la recta real en tres intervalos:

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

En uno o dos de estos intervalos, el radicando de la función es no negativo. Para saber cuál es, sólo tenemos que escoger algún punto al azar de cada intervalo.

Primer intervalo:

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

Segundo intervalo:

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

Tercer intervalo:

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

Por tanto, el radicando es no negativo en el primer y tercer intervalo. Luego la función es continua en

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

Observad que incluimos los puntos x=2 y x=-2 porque para estos valores el radicando es 0.

Gráfica:

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

Ejemplo 2

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

  • El radicando de la raíz debe ser no negativo.
  • El denominador tiene que ser distinto de 0.

Igualamos el radicando a 0:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Hay que estudiar el signo del radicando los intervalos siguientes:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Dando valores, el radicando es no negativo en el primer y tercer intervalo.

Factorizamos el denominador:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Aplicamos la regla de Ruffini para hallar las soluciones del polinomio de tercer grado:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Por tanto,

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Tenemos que excluir los puntos 0, 1 y -1.

El dominio es el conjunto de los reales excepto el intervalo [-1, 1]. La función es continua en su dominio.

Gráfica:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Ejemplo 3

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

  • El argumento del logaritmo debe ser positivo.
  • El radicando debe ser no negativo.
  • El denominador debe ser no nulo.

Aplicando las propiedades de los logaritmos,

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

De este modo, es fácil ver que deben cumplirse las siguientes inecuaciones:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Se cumplen ambas sólo si x>1.

Así, pues, el dominio de la función es ]1, +∞[. La función es continua en su dominio.

Gráfica:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

 

Más ejemplos en

 

Ejemplos de continuidad de funciones racionales

Vimos en continuidad de funciones que una una función racional es continua en los reales que no anulan su denominador. A continuación vamos a ver varios ejemplos.

Ejemplo 1

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Como es una función racional, el dominio es el conjunto de los reales excepto donde se anula el denominador. Para hallar estos puntos, igualamos el denominador a 0 y resolvemos la ecuación:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Por tanto, el dominio es el conjunto de los reales excepto en los puntos -3 y 3. La función es continua en todo su dominio.

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Ejemplo 2

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Observaciones:

  • El radicando de la raíz debe ser no negativo.
  • El denominador tiene que ser distinto de 0.

Igualamos el radicando a 0:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Hay que estudiar el signo del radicando los intervalos siguientes:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Dando valores, el radicando es no negativo en el primer y tercer intervalo.

Factorizamos el denominador:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Aplicamos la regla de Ruffini para hallar las soluciones del polinomio de tercer grado:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Por tanto,

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Tenemos que excluir los puntos 0, 1 y -1 del dominio.

El dominio es el conjunto de los reales excepto el intervalo [-1, 1]. La función es continua en su dominio.

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

 

Más ejemplos en

Matriz triangular

Sea A una matriz de dimensión mxn,

  • Es una matriz triangular superior si tiene 0’s por debajo de la diagonal, es decir, si aij=0 para i>j. Por ejemplo,

    Clasificación de las matrices según su forma en identidad, diagonal, bidiagonal, tridiagonal, triangular, traspuesta, adjunta, simétrica, antisimétrica, definida positiva, diagonalmente dominante, Hessenberg y Vandermonde. Con propiedades y ejemplos. Álgebra matricial. Matrices.

  • Es una matriz triangular inferior si tiene 0’s por encima de la diagonal, es decir, si aij=0 para i<j.

Por ejemplo,

Clasificación de las matrices según su forma en identidad, diagonal, bidiagonal, tridiagonal, triangular, traspuesta, adjunta, simétrica, antisimétrica, definida positiva, diagonalmente dominante, Hessenberg y Vandermonde. Con propiedades y ejemplos. Álgebra matricial. Matrices.

Sistema de numeración posicional

Los sistemas de numeración son posicionales cuando el valor del cada dígito del número depende de la posición en la que se encuentra.

Ejemplos de sistemas posicionales: binario, quinario, decimal, octal y hexadecimal. Un ejemplo de sistema de numeración no posicional es el sistema romano.

Símbolos del sistema

Cada sistema utiliza sus propios símbolos:

  • Decimal: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9.
  • Binario: 0 y 1.
  • Quinario: 0, 1, 2, 3 y 4.
  • Octal: 0, 1, 2, 3, 4, 5, 6 y 7.
  • Hexadecimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F.

Conversión

Para pasar un número en sistema decimal o cualquiera de los otros sistemas citados, se calcula una serie de divisiones (entre la base) y el número en la nueva base (escrito de derecha a izquierda) es el último cociente obtenido seguido de todos los restos obtenidos.

Ejemplo: el número en decimal 768 es el número 1400 en octal.

La conversión inversa, es decir, para pasar al sistema decimal, se suma el resultado de cada dígito multiplicado por la potencia n-ésima de la base, siendo n la posición del dígito (de derecha a izquierda y comenzando por 0). En el caso del sistema hexadecimal, los símbolos A, B, C, D, E y F representan 10, 11, 12, 13, 14, y 15, respectivamente.

Ejemplo: el número en hexadecimal A37F es el número 41855 en decimal.

Recursos: 

Eugène Rouché

Eugène Rouché (1832 –1910) fue un matemático francés, profesor de esta ciencia en el liceo Charlemagne y posteriormente en la École Centrale.

Rouché es conocido, sobre todo, por el Teorema de Rouché de análisis complejo sobre funciones holomorfas publicado en 1862.

Otro de sus resultados más conocidos es el teorema de Rouché-Frobenius que relaciona los rangos de las matrices de coeficientes y ampliada de la representación matricial de un sistema de ecuaciones lineales con el tipo de soluciones de éste.

El matemático coetáneo Georges Fontené (1848-1923) reclamó la autoría de la demostración del teorema de Rouché-Frobenius y más tarde, en 1905, el matemático alemán Ferdinand Georg Frobenius (1849-1917) acreditó la autoría tanto a Rouché como a Fontené.

Otros matemáticos:

¿Para qué sirven las Ecuaciones?

Escribimos este post ya que muchos estudiantes se preguntan para qué aprender a resolver ecuaciones. Un ejemplo de la utilidad de las ecuaciones es la resolución de problemas que aparecen en nuestra vida cotidiana.

Veamos un ejemplo de problema práctico:

Problema

Queremos diseñar una habitación de 18 metros cuadrados con forma rectangular de modo que el largo de la misma sea el doble que el ancho.

Solución

  • Llamamos al ancho de la habitación.
  • Como el largo tiene que ser el doble del ancho, el largo es 2·x. 
  • El área de un rectángulo es el producto del ancho por el largo:

Área = x·2·x = 2·x2

Como el área tiene que ser 18, tenemos la ecuación

18 =2·x2

La ecuación que tenemos es una ecuación de segundo grado incompleta. Esta ecuación tiene dos soluciones: x = 3 x = -3. 

La solución del problema es la solución positiva porque la incógnita x representa una longitud.

Por tanto, el largo de la habitación debe ser 6 metros y el ancho debe ser 3 metros. El área es 3·6 = 18 m2.

 

¡Ahora ya no tenéis excusa para pensar que las ecuaciones no sirven para nada!

Más ejemplos de problemas prácticos:

Contacto

Esta página web contiene algunas imágenes y problemas de otras páginas web bajo su consentimiento.

Si detectas algún error o quieres contactar por otra razón, puedes hacerlo a través de los comentarios en este post. El comentario no será visible.

¿Qué es una Ecuación?

Una ecuación es una igualdad entre dos expresiones algebraicas en las que aparece una (o más) incógnita. Normalmente, la incógnita es x. 

La incógnita x representa al número (o números), si existe, que hace que la igualdad sea verdadera. Este número desconocido es la solución de la ecuación.

Al cambiar la por la solución, la igualdad debe ser cierta.

Ejemplo

x+2 = 2·x-1

  • Si es 0, la igualdad no se cumple porque 0+2  no es igual a 2·0-1.
  • Si es 3, la igualdad sí se cumple porque 3+2  es igual a 2·3-1.

La solución de la ecuación es x = 3.

Algunas cuestiones…

Algunas cuestiones que suelen hacerse los alumnos son las siguientes:

  • ¿Todas las ecuaciones tienen solución?
  • ¿Cuántas soluciones tiene una ecuación?
  • ¿Cuántos tipos de ecuaciones hay?
  • ¿Puede haber más de una incógnita?

Respuestas a las cuestiones:

  • No todas las ecuaciones tienen solución. Por ejemplo, la ecuación x + 1 = x – 1 no tiene ninguna solución.
  • Una ecuación puede tener 0 soluciones, 1 solución, 2 soluciones, 3 soluciones, etc. El número de ecuaciones depende del tipo de ecuación.
  • Algunos tipos de ecuaciones son: ecuaciones lineales, ecuaciones cuadráticas, ecuaciones exponenciales, ecuaciones logarítmicas, ecuaciones irracionales, etc.
  • Sí puede haber más de una incógnita en una ecuación, pero según el tipo de ecuación podremos o no resolverla.

En la siguiente página veremos algunos tipos de ecuaciones y cómo resolverlas:

Ecuaciones resueltas