A partir de los conceptos expuestos en el tema anterior, en éste se estudian los conductores en equilibrio electrostático. Se puede definir un conductor como un material en el que las cargas eléctricas se pueden mover libremente. Haciendo uso de la ley de Gauss se deduce que la carga y el campo eléctrico en el interior de un conductor en equilibrio electrostático son nulos de modo que si el conductor está cargado su carga debe estar en la superficie. También utilizando la ley de Gauss se obtiene el valor del campo eléctrico en puntos exteriores próximos a la superficie del conductor, expresión conocida como teorema de Coulomb, comprobándose que en la superficie del conductor el campo eléctrico es normal a la misma. También se muestra como el potencial eléctrico es constante en todos los puntos de un conductor en equilibrio electrostático y, por tanto, que su superficie es una superficie equipotencial. De especial interés resulta el estudio del comportamiento de un conductor cuando se sitúa en un campo eléctrico externo, señalando que se producirá un movimiento transitorio de cargas dentro del conductor, dando lugar a un nuevo campo que, añadido al exterior, provoca un campo eléctrico interior resultante nulo. así como la discusión de la presión electrostática sobre la superficie de un conductor cargado, el poder de las puntas (campo eléctrico más intenso cerca de los puntos del conductor de menor radio de curvatura, como en los bordes o zonas puntiagudas) o el concepto de ruptura dieléctrica, es decir, el fenómeno por el cual muchos materiales no conductores se ionizan en campos eléctricos muy altos y se convierten en conductores. La magnitud del campo eléctrico para el cual tiene lugar la ruptura dieléctrica en un material se conoce como resistencia dieléctrica. Finalmente resulta interesante estudiar algunos sistemas de conductores, sobre todo aquéllos que contienen huecos en los que hay colocados otros conductores analizando el concepto de pantalla eléctrica.
La última parte del tema se dedica al estudio de la capacidad, los condensadores y los dieléctricos. Se introduce el concepto de capacidad y se lleva a cabo un análisis de las propiedades eléctricas de la materia desde los puntos de vista microscópico y macroscópico. Se estudia la capacidad de un condensador, dispositivo útil para almacenar carga y energía, formado por dos conductores muy próximos, pero aislados el uno del otro, que conectados a una diferencia de potencial, tal como una batería, adquieren cargas iguales y opuestas. Se estudian distintos tipos de condensadores como el de láminas planoparalelas, el cilíndrico y el esférico. Se analiza el almacenamiento de energía que se produce durante la carga de un condensador y se introduce el concepto de densidad de energía de un campo electrostático. La energía almacenada en un campo eléctrico es igual a la que se necesita para establecer el campo. Otras cuestiones a estudiar son la asociación de condensadores y las variaciones en la capacidad, el campo, el potencial y la carga eléctrica de un condensador cuando se introduce entre sus láminas un material dieléctrico, dependiendo si el condensador está aislado o no. Es importante hacer mención de que la función del dieléctrico situado entre las placas de un condensador no es sólo la de aumentar su capacidad, sino que también proporciona un medio mecánico para separar los dos conductores, que deben estar muy próximos y aumenta la resistencia a la ruptura dieléctrica en el condensador debido a que la resistencia dieléctrica de un dieléctrico es generalmente mayor que la del aire. Finalmente se estudian los dieléctricos desde un punto de vista microscópico. Los dieléctricos se distinguen de los conductores porque no tienen cargas libres que se puedan mover a través del material, al ser sometidos a un campo eléctrico. Se habla de los dieléctricos apolares y polares y su comportamiento en un campo eléctrico externo el cual, en última instancia, orienta en la dirección del campo eléctrico las moléculas que poseen un momento dipolar permanente o aquéllas en las que se ha inducido un momento dipolar, pues en un dieléctrico polarizado cada molécula se comporta como un dipolo eléctrico. Estas moléculas están sometidas a un par que tienen a alinearlas con el campo, pero las colisiones debidas a la agitación térmica de las moléculas tienden a impedir este alineamiento.