Las distintas partes de la Física

La Física, al igual que, naturalmente, muchas otras disciplinas, abarca diferentes campos o especialidades. Es muy difícil preparar una tabla que incluya todas las ramas de la Física. Más que difícil, es imposible, si se aspira a una clasificación definida y no problemática. Esto es así porque algunas “especialidades” en que se podría pensar se superponen en mayor o menor medida, como ocurre, por ejemplo, con la Física del Estado Sólido y la Física de los Materiales; la Astrofísica y la Relatividad General tienen asimismo muchos puntos en común; la Optoelectrónica es parte tanto de la Óptica como de la Electrónica; la Física Aplicada puede ser muchas cosas al mismo tiempo. Para evitar algunos de estos problemas, me voy a limitar a mencionar las principales, y más básicas, áreas de la Física, considerando, las denominadas por muchos ramas clásicas y ramas modernas.

El hombre, poseedor de una mente investigadora, ha tenido siempre una gran curiosidad respecto a cómo funciona la Naturaleza. Al principio sus únicas fuentes de información fueron sus sentidos y por ello clasificó los fenómenos observados de acuerdo a la manera en que los percibía. La “luz” fue relacionada con la visión y la Óptica se desarrolló como una Ciencia más o menos independiente asociada a aquélla. El “sonido” fue relacionado con la audición y la Acústica se desarrolló como una Ciencia relativa a este sentido. El “calor” fue relacionado a otra clase de sensación física, y por muchos años el estudio del calor (denominado Termodinámica) fue otra parte autónoma de la Física. El “movimiento”, evidentemente, es el más común de todos los fenómenos observados directamente, y la Ciencia del movimiento, la Mecánica, se desarrolló más temprano que cualquier otra rama de la Física. El movimiento de los planetas causado por sus interacciones gravitatorias, así como la caída libre de los cuerpos, fue satisfactoriamente explicado haciendo uso de la leyes de la Mecánica; por ello, la Gravitación se consideró tradicionalmente como una parte de la Mecánica. El Electromagnetismo, no estando relacionado directamente con ninguna experiencia sensorial –a pesar de ser responsable de la mayoría de ellas–, no apareció como una rama organizada de la Física sino hasta el siglo XIX.

Onda electromagnética. Créditos: Wikipedia.

De esta manera en el siglo XIX la Física aparecía dividida en una serie de ramas (llamadas clásicas): Mecánica, Acústica, Termodinámica, Electromagnetismo y Óptica, con muy poca o ninguna conexión entre ellas, aunque la Mecánica fue, con toda propiedad, el principio guía para todas ellas. De este modo se ha venido enseñando la Física y los cursos de Física General suelen abordar, con mayor o menor profundidad, cuestiones relacionadas con estas ramas. La razón de esto es que las ramas “clásicas” de la Física son, y seguirán siendo, campos muy importantes de especialización y actividad profesional. Incluso estos son los contenidos de la materias de “Fundamentos Físicos” que aparecen en las Directrices Generales Propias de las Nuevos Planes de Estudio de las Titulaciones Técnicas aprobadas por el Consejo de Universidades.

A finales del siglo XIX, los científicos creían haber descubierto y analizado casi todo lo que había que saber de Física. Sin embargo, a principios del siglo XX, se produjo una verdadera revolución que conmocionó al mundo de la Física. En el año 1900 Planck introdujo las ideas básicas que llevaron a la formulación de la teoría cuántica, y en 1905 Einstein formuló su teoría especial de la Relatividad. Estas dos teorías tuvieron un efecto profundo en el entendimiento de la Naturaleza y han dado lugar a nuevos descubrimientos y teorías en los campos de la Física Atómica, la Física Nuclear y de Partículas Elementales, la Física del Estado Sólido, así como de la Gravitación y la Cosmología. Todas ellas forman parte de lo que muchos denominan “Física Moderna”, y que cubre, aproximadamente, los desarrollos de la Física durante el siglo XX.

Ecuación de Schrödinger. Créditos: Wikipedia.

Sin embargo, es importante tener en cuenta hoy en día que existe una relación entre los fenómenos incluidos en las ramas “clásicas” y en las ramas “modernas”. Esta relación ha dado lugar a una nueva tendencia en el pensamiento, que mira a los fenómenos físicos desde un punto de vista unificado y, hasta cierto punto, más lógico. Ésta es, quizás, una de las grandes proezas de la Física del siglo XX. Así, por ejemplo, existen aspectos cuánticos dentro de la Óptica, en lo que se conoce como Óptica Cuántica, un ejemplo de ello es el láser. Algo similar ocurre con el Electromagnetismo, pues también existe una Electrodinámica Cuántica. Incluso en la Termodinámica existen efectos cuánticos, como el comportamiento del helio a bajas temperaturas y su superfluidez, o teorías cuánticas como las de los calores específicos.

Bibliografía

M. Alonso y E. J. Finn, Física. Vol. I: Mecánica. Addison-Wesley Iberoamericana. México (1986).

R. Feynman, R. B. Leighton y M. Sands, Física. Vol. I: Mecánica, Radiación y Calor. Addison-Wesley. México (1987).

G. Holton y S. G. Brush, Introducción a los conceptos y teorías de las Ciencias Físicas. Reverté. Barcelona (1988).

J. M. Sánchez Ron, Profesiones con futuro: Físico. Grijalbo. Barcelona (1994).

Profesiones: La Física. Hablando con Juan Rojo. Acento Editorial. Madrid (1994).

Posted in Asignatura, Divulgación | Tagged | Leave a comment

Física y Ciencias Experimentales

Un objetivo de la Física es la comprensión de los componentes básicos de la materia y la búsqueda de las leyes universales que rigen los fenómenos naturales. Se trata, pues, de una Ciencia fundamental porque trata cuestiones del Universo tales como el tiempo, el espacio, la materia, el calor, la luz, el sonido, la electricidad, el magnetismo, etc. Todo suceso que ocurre en la Naturaleza posee algunas características que podrán apreciarse en función de las cuestiones citadas.

La Física ha proporcionado una base conceptual y una estructura teórica sobre la cual se han fundado otras ciencias experimentales y porque desde el punto de vista práctico, ha proporcionado técnicas que pueden utilizarse casi en cualquier área de investigación pura y aplicada. Por ello, es difícil encontrar una ciencia que no utilice técnicas físicas en su desarrollo. Como soy físico de formación (y de profesión), y por ello se me puede decir que parte demasiado interesada, que no soy un observador imparcial, pero puedo afirmar sin riesgo a equivocarme que la Física es posiblemente una de las ciencias más básicas y más fundamentales de todas las que existen, pues es la base de otros muchos campos científicos. Es difícil encontrar una actividad de investigación que no utilice conceptos, teorías y técnicas físicas en su desarrollo, incluyendo campos aparentemente tan alejados como la Arqueología, la Paleontología, la Música, etc. Esto da a la Física el carácter de ciencia fundamental.

Las concepciones de Newton, por ejemplo, pusieron en conexión la Mecánica y la Óptica con el Álgebra, la Geometría y el Cálculo Infinitesimal, vinculándose así, definitivamente la Física y las MATEMÁTICAS.

La ASTRONOMÍA, la Ciencia que explica los movimientos del Sol, de la Luna, de los planetas y de las estrellas, se basa en la Física. Los astrónomos utilizan cada vez más técnicas ópticas, espectroscópicas y de radiocomunicación. El uso de los radiotelescopios y la exploración del Universo con vehículos espaciales, equipados con aparatos automáticos de detección y transmisión, han contribuido extraordinariamente en los últimos años a un mejor conocimiento del Universo.

Telescopio de la Facultad de Ciencias Astrónomicas y Geofísicas de La Plata (Argentina). Créditos: Wikipedia.

En la GEOLOGÍA se utilizan métodos gravimétricos, acústicos, mecánicos y nucleares. La introducción de técnicas radiactivas (geocronología) ha permitido determinar más exactamente la edad y origen de los yacimientos geológicos. Lo mismo podemos decir de la OCEANOGRAFÍA, de la METEOROLOGÍA y de la SISMOLOGÍA.

En el campo de la BIOLOGÍA y de la MEDICINA, el estudio de las estructuras biológicas mediante métodos físicos como los Rayos X, los isótopos radiactivos y el microscopio electrónico son de gran valor en el descubrimiento de los secretos de las proteínas y genes. Los hospitales modernos están equipados con laboratorios en los cuales se utilizan abundantemente las técnicas físicas (ultrasonidos, bombas de cobalto, resonancia magnética nuclear, fibras ópticas, etc.).

La QUÍMICA, por su parte, a partir de Dalton y Lavoisier inicia una cierta dependencia conceptual con la Física. Puede decirse que el desarrollo de las dos Ciencias, ahora como en el pasado, presenta una gran interdependencia. De hecho, las fronteras entre la Química y la Física no siempre están claras.

Bibliografía

M. Alondo y E. J. Finn, Física (Addison-Wesley Iberoamericana, Wilmington, 1995).

Profesiones: La Física. Hablando con Juan Rojo (Acento Editorial. Madrid, 1994).

Posted in Asignatura, Divulgación | Tagged , | Comments Off on Física y Ciencias Experimentales

Los 72 sabios inscritos en la Torre Eiffel

Se conocen como los 72 sabios inscritos en la torre Eiffel (en francés, 72 savants inscrits sur la tour Eiffel) o más sencillamente, sabios de la torre Eiffel, a los nombres (en realidad, apellidos) que Gustave Eiffel hizo grabar en la torre Eiffel en el momento de su construcción. Corresponden a científicos, ingenieros e industriales franceses que realizaron aportaciones relevantes en sus campos, entre 1789 y 1889, y que eran y son la gloria de la ciencia y la técnica de Francia del siglo XIX.

Los nombres grabados se encuentran en los entrepaños de las ménsulas que soportan la primera línea de balcones, justo encima del primer arco a razón de 18 nombres por cada lado (las del Trocadero, Escuela Militar, Grenelle y La Bourdonnais​). Los nombres fueron pintados en varias ocasiones a comienzos del siglo XX y restaurados en 1986-1987 por la Société Nouvelle d’exploitation de la Tour Eiffel, la compañía contratada por entonces para operar todos los negocios relacionados con la torre (actualmente se denomina SETE). La torre y sus derechos son propiedad de la ciudad de París. Las letras, de 60 cm de altura, se decoraron originariamente en oro.

MÁS INFORMACIÓN

Posted in Biografías, Divulgación, Historia de la Física | Tagged , , | Comments Off on Los 72 sabios inscritos en la Torre Eiffel

Tema 8. Corriente eléctrica

Este tema está dedicado al estudio de la corriente eléctrica, es decir, al estudio del movimiento de la carga eléctrica de una región a otra. El tema comienza con una descripción de la naturaleza de la corriente eléctrica, introduciendo los conceptos de intensidad y densidad de corriente. La intensidad de corriente es una magnitud escalar que representa la carga que fluye a través de la sección de un conductor por unidad de tiempo, mientras que la densidad de corriente es una magnitud vectorial cuyo flujo a través de una determinada superficie es precisamente la intensidad de la corriente. Un aspecto importante es la expresión que relaciona la densidad de corriente con magnitudes microscópicas de ésta como son el número de portadores de carga por unidad de volumen, la carga de cada portador y su velocidad de arrastre o desplazamiento.

Seguidamente se estudia la ley de Ohm y se introduce el concepto de resistencia y las expresiones para la resistencia equivalente de resistencias en serie y en paralelo. Utilizando la expresión del vector densidad de corriente se llega a una ecuación vectorial para la ley de Ohm que relaciona los vectores densidad de corriente y campo eléctrico aplicado mediante la conductividad o su inversa la resistividad. Es importante presentar algunos valores numéricos de la conductividad (o de la resistividad) para conductores, semiconductores y aislantes, así como señalar que mientras que la resistividad de un conductor metálico aumenta con la temperatura, la de un semiconductor disminuye cuando aquélla se incrementa.

La existencia de una corriente eléctrica a través de conductores que constituyen un circuito eléctrico implica una disipación de energía en forma de calor por efecto Joule, por lo que para mantener una corriente son necesarios otros elementos que aporten energía eléctrica al circuito. Ésta es la función de los generadores, dispositivos capaces de transformar algún tipo de energía en energía eléctrica, y que vienen caracterizados por su fuerza electromotriz.

Finalmente, se describe brevemente la utilización de los amperímetros y voltímetros como instrumentos de medida de intensidades y diferencias de potencial en diferentes montajes.

Posted in Asignatura, Temas | Tagged , | Comments Off on Tema 8. Corriente eléctrica

Tema 6 (Ampliación de Física): Dinámica tridimensional del sólido rígido

El estudio de la dinámica tridimensional de un sólido rígido es más complejo que el estudio de la dinámica plana del sólido rígido. Una cuestión importante a tener en cuenta es que en el caso tridimensional no sólo puede cambiar el módulo de los vectores velocidad angular ω, aceleración angular α y momento angular L, sino que también pueden cambiar sus orientaciones en el espacio. Recordemos que en la dinámica plana los vectores ω, α y L siempre se mantienen perpendiculares al plano del movimiento, de modo que si consideramos éste como el plano xy, entonces estos tres vectores tienen la dirección del eje z siendo, por tanto, paralelos entre sí.

Una vez familiarizados en temas anteriores con las técnicas utilizadas para determinar momentos de inercia y para analizar el movimiento de traslación y rotación de un sólido rígido en movimiento plano, se van a determinar las ecuaciones que describen el movimiento tridimensional de un sólido rígido que, en el caso en el que los ejes xyz solidarios con el sólido rígido tengan como origen el centro de masa G del sólido y además sean ejes principales de inercia, se reducen a las ecuaciones de Euler.

Se verá como, en el caso más general, los vectores ω y L  no serán colineales, a diferencia de lo que sucede en el caso del movimiento plano.

Posted in Ampliación de Física, Asignatura, Grado en Ingeniería Robótica, Temas | Tagged , , | Comments Off on Tema 6 (Ampliación de Física): Dinámica tridimensional del sólido rígido

Tema 7. Materiales y condensadores

A partir de los conceptos expuestos en el tema anterior, en éste se estudian los conductores en equilibrio electrostático. Se puede definir un conductor como un material en el que las cargas eléctricas se pueden mover libremente. Haciendo uso de la ley de Gauss se deduce que la carga y el campo eléctrico en el interior de un conductor en equilibrio electrostático son nulos de modo que si el conductor está cargado su carga debe estar en la superficie. También utilizando la ley de Gauss se obtiene el valor del campo eléctrico en puntos exteriores próximos a la superficie del conductor, expresión conocida como teorema de Coulomb, comprobándose que en la superficie del conductor el campo eléctrico es normal a la misma. También se muestra como el potencial eléctrico es constante en todos los puntos de un conductor en equilibrio electrostático y, por tanto, que su superficie es una superficie equipotencial. De especial interés resulta el estudio del comportamiento de un conductor cuando se sitúa en un campo eléctrico externo, señalando que se producirá un movimiento transitorio de cargas dentro del conductor, dando lugar a un nuevo campo que, añadido al exterior, provoca un campo eléctrico interior resultante nulo. así como la discusión de la presión electrostática sobre la superficie de un conductor cargado, el poder de las puntas (campo eléctrico más intenso cerca de los puntos del conductor de menor radio de curvatura, como en los bordes o zonas puntiagudas) o el concepto de ruptura dieléctrica, es decir, el fenómeno por el cual muchos materiales no conductores se ionizan en campos eléctricos muy altos y se convierten en conductores. La magnitud del campo eléctrico para el cual tiene lugar la ruptura dieléctrica en un material se conoce como resistencia dieléctrica. Finalmente resulta interesante estudiar algunos sistemas de conductores, sobre todo aquéllos que contienen huecos en los que hay colocados otros conductores analizando el concepto de pantalla eléctrica.

La última parte del tema se dedica al estudio de la capacidad, los condensadores y los dieléctricos. Se introduce el concepto de capacidad y se lleva a cabo un análisis de las propiedades eléctricas de la materia desde los puntos de vista microscópico y macroscópico. Se estudia la capacidad de un condensador, dispositivo útil para almacenar carga y energía, formado por dos conductores muy próximos, pero aislados el uno del otro, que conectados a una diferencia de potencial, tal como una batería, adquieren cargas iguales y opuestas. Se estudian distintos tipos de condensadores como el de láminas planoparalelas, el cilíndrico y el esférico. Se analiza el almacenamiento de energía que se produce durante la carga de un condensador y se introduce el concepto de densidad de energía de un campo electrostático. La energía almacenada en un campo eléctrico es igual a la que se necesita para establecer el campo. Otras cuestiones a estudiar son la asociación de condensadores y las variaciones en la capacidad, el campo, el potencial y la carga eléctrica de un condensador cuando se introduce entre sus láminas un material dieléctrico, dependiendo si el condensador está aislado o no. Es importante hacer mención de que la función del dieléctrico situado entre las placas de un condensador no es sólo la de aumentar su capacidad, sino que también proporciona un medio mecánico para separar los dos conductores, que deben estar muy próximos y aumenta la resistencia a la ruptura dieléctrica en el condensador debido a que la resistencia dieléctrica de un dieléctrico es generalmente mayor que la del aire. Finalmente se estudian los dieléctricos desde un punto de vista microscópico. Los dieléctricos se distinguen de los conductores porque no tienen cargas libres que se puedan mover a través del material, al ser sometidos a un campo eléctrico. Se habla de los dieléctricos apolares y polares y su comportamiento en un campo eléctrico externo el cual, en última instancia, orienta en la dirección del campo eléctrico las moléculas que poseen un momento dipolar permanente o aquéllas en las que se ha inducido un momento dipolar, pues en un dieléctrico polarizado cada molécula se comporta como un dipolo eléctrico. Estas moléculas están sometidas a un par que tienen a alinearlas con el campo, pero las colisiones debidas a la agitación térmica de las moléculas tienden a impedir este alineamiento.

Posted in Asignatura, Temas | Tagged , | Comments Off on Tema 7. Materiales y condensadores

Tema 5 (Ampliación de Física): Dinámica plana del sólido rígido

En este tema y en siguiente se estudiará la dinámica del sólido rígido, esto es, las relaciones existentes entre las fuerzas que actúan sobre el sólido rígido, la forma y la masa del cuerpo, y el movimiento que se produce. En “Fundamentos Físicos de la Ingeniería I” ya se estudiaron relaciones similares para una partícula, un sistema de partículas y un sólido rígido que rota alrededor de un eje fijo que pasa por su centro de masa G. Los resultados que se obtendrán en este tema se limitarán en dos formas:

  • Movimiento plano del sólido rígido, esto es, el movimiento en el que cada partícula del cuerpo permanece a una distancia constante de un plano de referencia fijo.
  • Salvo que se señale lo contrario, se considerarán sólidos rígidos que son simétricos respecto al plano de referencia, esto es, tienen un eje de inercia principal perpendicular al plano de referencia.

En el caso del movimiento plano en el plano xy, tanto la velocidad angular ω, como la aceleración angular α y el momento angular o cinético L son perpendiculares al plano xy, es decir, tienen la dirección del eje z.

Posted in Ampliación de Física, Asignatura, Grado en Ingeniería Robótica, Temas | Tagged , , , | Comments Off on Tema 5 (Ampliación de Física): Dinámica plana del sólido rígido

Tema 6. Campo eléctrico

Este tema está dedicado a la Electrostática, es decir, al estudio del campo y el potencial eléctricos originados por cargas eléctricas o distribuciones continuas de cargas en reposo. El tema comienza con el análisis de la electricidad con una breve discusión sobre el concepto de carga eléctrica y la naturaleza eléctrica de la materia, incidiendo especialmente en la conservación y cuantización de la carga, para pasar a la presentación de la ley de Coulomb, ley experimental que describe la fuerza entre dos carga eléctricas fijas puntuales. Posteriormente se introduce el concepto de campo eléctrico y se ve cómo puede describirse mediante líneas de campo o líneas de fuerza que tiene su origen en las cargas positivas y terminan en las cargas negativas, siendo el vector campo eléctrico tangente en cada punto a estas líneas de fuerza y su intensidad viene indicada por la densidad de las líneas de fuerza. El principio de superposición se deduce de la observación de que cada carga produce su propio campo eléctrico, independientemente de todas las otras cargas presentes a su alrededor, y que el campo resultante es la suma vectorial de los campos individuales. Aunque la carga está cuantizada, con frecuencia se presentan situaciones en las que un gran número de cargas están tan próximas que la carga total puede considerarse distribuida continuamente en el espacio, siendo necesario utilizar una densidad de carga para describir una distribución de un gran número de cargas discretas. Se introducen las densidades volumétrica, superficial y lineal de carga. En este contexto se muestran algunos ejemplos de cómo se calcula el campo eléctrico debido a diversos tipos de distribuciones continuas de carga (segmento rectilíneo, anillo y disco). Posteriormente se analiza el movimiento de cargas puntuales en campos eléctricos, en particular en campos uniformes, considerando las situaciones en las que la carga incide con una velocidad tanto paralela como perpendicular a la dirección del campo.

La fuerza eléctrica entre dos cargas puntuales está dirigida a lo largo de la línea que une las dos cargas y depende de la inversa del cuadrado de su separación, lo mismo que la fuerza gravitatoria entre dos masas. Como la fuerza gravitatoria la fuerza eléctrica entre cargas en reposo es conservativa y existe una función energía potencial asociada con la fuerza eléctrica, siendo la energía potencial proporcional a la carga. Se comprueba como la circulación del campo electrostático creado por una carga puntual a lo largo de una trayectoria cerrada es nula, lo que implica que el campo es conservativo. La energía potencial por unidad de carga se denomina potencial eléctrico, y a kontinuación se obtiene el potencial debido tanto a una carga puntual como a diversas distribuciones continuas de carga. Conviene destacar que sólo es posible determinar diferencias entre los potenciales en dos puntos diferentes. No se puede hablar, por tanto, de potencial absoluto en un punto del espacio, sino sólo de diferencia de potencial entre dos puntos. Si deseamos hablar de potencial eléctrico en un punto dado tenemos que tomar arbitrariamente, como valor de referencia, el potencial en un punto determinado. Normalmente es conveniente elegir como origen el potencial del infinito, pero es importante señalar que esto no siempre es posible, basta citar como ejemplos los casos de la línea infinita cargada o del plano cargado. A partir de la relación del campo eléctrico y el potencial se indica como se puede calcular uno de ellos si se conoce el otro. Conocido el campo eléctrico puede calcularse el potencial calculando la circulación del campo, es decir, mediante una integral. Sin embargo, si el potencial eléctrico es el dato puede determinarse el campo eléctrico mediante el gradiente, es decir, derivando. Asimismo se introducen las superficies equipotenciales como aquellas superficies que tienen el mismo potencial en todos sus puntos. Por ejemplo, las superficies equipotenciales alrededor de una carga puntual son superficies esféricas concéntricas estando la carga situada en el centro de las mismas. Se comprueba como en cada punto de una superficie equipotencial el campo eléctrico es perpendicular a la superficie, esto es, las líneas del campo eléctrico son perpendiculares a las superficies equipotenciales. A continuación se introduce el concepto de flujo del campo eléctrico y se discute la ley de Gauss que relaciona el campo eléctrico que existe en los puntos de una superficie cerrada con la carga neta encerrada dentro de la misma. La ley de Gauss se deduce de la ley de Coulomb y es una de las cuatro ecuaciones de Maxwell del Electromagnetismo. Esta ley proporciona un método práctico para el cálculo del campo eléctrico correspondiente a distribuciones de carga sencillas que posean una cierta simetría (esferas, cilindros, líneas, planos, etc.), haciendo uso del concepto de superficie gaussiana.

Posted in Asignatura, Temas | Tagged , | Comments Off on Tema 6. Campo eléctrico