Comienza la asignatura “Electromagnetismo II” del Grado en Física de la UA

Contenidos para el curso 2019-20

Tema 1.-  CIRCUITOS DE CORRIENTE ALTERNA

  • Introducción
  • Elementos básicos de una red
  • Circuitos en régimen alterno
  • Potencia en régimen alterno
  • Resonancia
  • Tensión entre los extremos de una R, una L y una C. Noción de filtro
  • Leyes de Kirchhoff
  • Método de las corrientes de malla
  • Método de las tensiones en los nudos
  • Teoremas relativos a circuitos

Tema 2.-  ECUACIONES DE MAXWELL Y LEYES DE CONSERVACIÓN

  • Introducción
  • Corriente de desplazamiento. Ley de Ampère-Maxwell
  • Ecuaciones de Maxwell en el espacio libre y en medios materiales
  • Condiciones de contorno
  • Unicidad de la solución
  • Ecuación de continuidad
  • Energía electromagnética. Vector de Poynting
  • Momento lineal del campo electromagnético
  • Momento angular del campo electromagnético
  • Sistemas de unidades

Tema 3.-  ONDAS ELECTROMAGNÉTICAS

  • Introducción
  • Ecuación de ondas para los campos
  • Ondas electromagnéticas en el espacio libre
  • Energía y momento lineal de una onda electromagnética
  • Ondas electromagnéticas en dieléctricos
  • Ondas electromagnéticas en conductores
  • Medios dispersivos: velocidad de grupo y velocidad de fase
  • Ondas guiadas

Tema 4.-  DINÁMICA DE PARTÍCULAS RELATIVISTAS EN CAMPOS ELECTROMAGNÉTICOS

  • Introducción
  • Cinemática y dinámica relativistas
  • Tetrapotencial campo. Función de Lagrange
  • Ecuaciones de movimiento en forma covariante. Tensor campo electromagnético
  • Fuerza de Lorentz. Expresión covariante de la fuerza
  • Invariancia gauge
  • Formulación lagrangiana no covariante
  • Transformaciones de los campos
  • Invariantes del campo electromagnético
  • Campo creado por una carga móvil: ley de Biot-Savart

Tema 5.-  LAS ECUACIONES DE MAXWELL EN EL ESPACIO LIBRE

  • Introducción
  • Contenido físico de las ecuaciones de Maxwell (I)
  • Conservación de la carga y tetravector corriente
  • Ecuaciones de Maxwell en forma covariante
  • Ecuaciones de onda para los potenciales: gauges
  • Contenido físico de las ecuaciones de Maxwell (II)

Tema 6.-  SOLUCIÓN GENERAL DE LAS ECUACIONES DE MAXWELL

  • Introducción
  • Ondas esféricas asociadas a una carga puntual en el origen. Potenciales retardados
  • Expresión general para los potenciales retardados
  • Comparación con el caso estático: resultados con validez general y parcial
  • Potenciales para una carga móvil: solución de Liénard-Wiechert
  • Campos creados por una carga en movimiento arbitrario: campo próximo y campo de radiación

Tema 7.-  TEORÍA DE LA RADIACIÓN

  • Introducción
  • Radiación por una carga acelerada en la aproximación no-relativista de Larmor: aproximación dipolar
  • Radiación de un dipolo eléctrico
  • Radiación de un dipolo magnético
  • Radiación por una carga acelerada en el caso general
  • Acelerador lineal y acelerador circular. Radiación de sincrotrón
  • Reacción de radiación. Ecuación de Abraham-Lorentz

Tema 8.-  FORMULACIÓN LAGRANGIANA DEL CAMPO ELECTROMAGNÉTICO

  • Introducción
  • Formulación lagrangiana de un sistema discreto
  • Transición de un sistema discreto a un sistema continuo
  • Formulación lagrangiana de un campo
  • Lagrangiano para el campo electromagnético y formulación covariante de las ecuaciones de Maxwell
  • Tensor energía-impulso
  • Simetrización del tensor energía-impulso. Teorema de Poynting
  • Campo electromagnético con partículas. Leyes de conservación
  • Invariancia gauge y conservación de la carga
Posted in Enseñanza/aprendizaje, Materiales docentes | Tagged , , , | Comments Off on Comienza la asignatura “Electromagnetismo II” del Grado en Física de la UA

Las distintas partes de la Física

La Física, al igual que, naturalmente, muchas otras disciplinas, abarca diferentes campos o especialidades. Es muy difícil preparar una tabla que incluya todas las ramas de la Física. Más que difícil, es imposible, si se aspira a una clasificación definida y no problemática. Esto es así porque algunas “especialidades” en que se podría pensar se superponen en mayor o menor medida, como ocurre, por ejemplo, con la Física del Estado Sólido y la Física de los Materiales; la Astrofísica y la Relatividad General tienen asimismo muchos puntos en común; la Optoelectrónica es parte tanto de la Óptica como de la Electrónica; la Física Aplicada puede ser muchas cosas al mismo tiempo. Para evitar algunos de estos problemas, me voy a limitar a mencionar las principales, y más básicas, áreas de la Física, considerando, las denominadas por muchos ramas clásicas y ramas modernas.

El hombre, poseedor de una mente investigadora, ha tenido siempre una gran curiosidad respecto a cómo funciona la Naturaleza. Al principio sus únicas fuentes de información fueron sus sentidos y por ello clasificó los fenómenos observados de acuerdo a la manera en que los percibía. La “luz” fue relacionada con la visión y la Óptica se desarrolló como una Ciencia más o menos independiente asociada a aquélla. El “sonido” fue relacionado con la audición y la Acústica se desarrolló como una Ciencia relativa a este sentido. El “calor” fue relacionado a otra clase de sensación física, y por muchos años el estudio del calor (denominado Termodinámica) fue otra parte autónoma de la Física. El “movimiento”, evidentemente, es el más común de todos los fenómenos observados directamente, y la Ciencia del movimiento, la Mecánica, se desarrolló más temprano que cualquier otra rama de la Física. El movimiento de los planetas causado por sus interacciones gravitatorias, así como la caída libre de los cuerpos, fue satisfactoriamente explicado haciendo uso de la leyes de la Mecánica; por ello, la Gravitación se consideró tradicionalmente como una parte de la Mecánica. El Electromagnetismo, no estando relacionado directamente con ninguna experiencia sensorial –a pesar de ser responsable de la mayoría de ellas–, no apareció como una rama organizada de la Física sino hasta el siglo XIX.

Onda electromagnética. Créditos: Wikipedia.

De esta manera en el siglo XIX la Física aparecía dividida en una serie de ramas (llamadas clásicas): Mecánica, Acústica, Termodinámica, Electromagnetismo y Óptica, con muy poca o ninguna conexión entre ellas, aunque la Mecánica fue, con toda propiedad, el principio guía para todas ellas. De este modo se ha venido enseñando la Física y los cursos de Física General suelen abordar, con mayor o menor profundidad, cuestiones relacionadas con estas ramas. La razón de esto es que las ramas “clásicas” de la Física son, y seguirán siendo, campos muy importantes de especialización y actividad profesional. Incluso estos son los contenidos de la materias de “Fundamentos Físicos” que aparecen en las Directrices Generales Propias de las Nuevos Planes de Estudio de las Titulaciones Técnicas aprobadas por el Consejo de Universidades.

A finales del siglo XIX, los científicos creían haber descubierto y analizado casi todo lo que había que saber de Física. Sin embargo, a principios del siglo XX, se produjo una verdadera revolución que conmocionó al mundo de la Física. En el año 1900 Planck introdujo las ideas básicas que llevaron a la formulación de la teoría cuántica, y en 1905 Einstein formuló su teoría especial de la Relatividad. Estas dos teorías tuvieron un efecto profundo en el entendimiento de la Naturaleza y han dado lugar a nuevos descubrimientos y teorías en los campos de la Física Atómica, la Física Nuclear y de Partículas Elementales, la Física del Estado Sólido, así como de la Gravitación y la Cosmología. Todas ellas forman parte de lo que muchos denominan “Física Moderna”, y que cubre, aproximadamente, los desarrollos de la Física durante el siglo XX.

Ecuación de Schrödinger. Créditos: Wikipedia.

Sin embargo, es importante tener en cuenta hoy en día que existe una relación entre los fenómenos incluidos en las ramas “clásicas” y en las ramas “modernas”. Esta relación ha dado lugar a una nueva tendencia en el pensamiento, que mira a los fenómenos físicos desde un punto de vista unificado y, hasta cierto punto, más lógico. Ésta es, quizás, una de las grandes proezas de la Física del siglo XX. Así, por ejemplo, existen aspectos cuánticos dentro de la Óptica, en lo que se conoce como Óptica Cuántica, un ejemplo de ello es el láser. Algo similar ocurre con el Electromagnetismo, pues también existe una Electrodinámica Cuántica. Incluso en la Termodinámica existen efectos cuánticos, como el comportamiento del helio a bajas temperaturas y su superfluidez, o teorías cuánticas como las de los calores específicos.

Bibliografía

M. Alonso y E. J. Finn, Física. Vol. I: Mecánica. Addison-Wesley Iberoamericana. México (1986).

R. Feynman, R. B. Leighton y M. Sands, Física. Vol. I: Mecánica, Radiación y Calor. Addison-Wesley. México (1987).

G. Holton y S. G. Brush, Introducción a los conceptos y teorías de las Ciencias Físicas. Reverté. Barcelona (1988).

J. M. Sánchez Ron, Profesiones con futuro: Físico. Grijalbo. Barcelona (1994).

Profesiones: La Física. Hablando con Juan Rojo. Acento Editorial. Madrid (1994).

Posted in Asignatura, Divulgación | Tagged | Comments Off on Las distintas partes de la Física

Física y Ciencias Experimentales

Un objetivo de la Física es la comprensión de los componentes básicos de la materia y la búsqueda de las leyes universales que rigen los fenómenos naturales. Se trata, pues, de una Ciencia fundamental porque trata cuestiones del Universo tales como el tiempo, el espacio, la materia, el calor, la luz, el sonido, la electricidad, el magnetismo, etc. Todo suceso que ocurre en la Naturaleza posee algunas características que podrán apreciarse en función de las cuestiones citadas.

La Física ha proporcionado una base conceptual y una estructura teórica sobre la cual se han fundado otras ciencias experimentales y porque desde el punto de vista práctico, ha proporcionado técnicas que pueden utilizarse casi en cualquier área de investigación pura y aplicada. Por ello, es difícil encontrar una ciencia que no utilice técnicas físicas en su desarrollo. Como soy físico de formación (y de profesión), y por ello se me puede decir que parte demasiado interesada, que no soy un observador imparcial, pero puedo afirmar sin riesgo a equivocarme que la Física es posiblemente una de las ciencias más básicas y más fundamentales de todas las que existen, pues es la base de otros muchos campos científicos. Es difícil encontrar una actividad de investigación que no utilice conceptos, teorías y técnicas físicas en su desarrollo, incluyendo campos aparentemente tan alejados como la Arqueología, la Paleontología, la Música, etc. Esto da a la Física el carácter de ciencia fundamental.

Las concepciones de Newton, por ejemplo, pusieron en conexión la Mecánica y la Óptica con el Álgebra, la Geometría y el Cálculo Infinitesimal, vinculándose así, definitivamente la Física y las MATEMÁTICAS.

La ASTRONOMÍA, la Ciencia que explica los movimientos del Sol, de la Luna, de los planetas y de las estrellas, se basa en la Física. Los astrónomos utilizan cada vez más técnicas ópticas, espectroscópicas y de radiocomunicación. El uso de los radiotelescopios y la exploración del Universo con vehículos espaciales, equipados con aparatos automáticos de detección y transmisión, han contribuido extraordinariamente en los últimos años a un mejor conocimiento del Universo.

Telescopio de la Facultad de Ciencias Astrónomicas y Geofísicas de La Plata (Argentina). Créditos: Wikipedia.

En la GEOLOGÍA se utilizan métodos gravimétricos, acústicos, mecánicos y nucleares. La introducción de técnicas radiactivas (geocronología) ha permitido determinar más exactamente la edad y origen de los yacimientos geológicos. Lo mismo podemos decir de la OCEANOGRAFÍA, de la METEOROLOGÍA y de la SISMOLOGÍA.

En el campo de la BIOLOGÍA y de la MEDICINA, el estudio de las estructuras biológicas mediante métodos físicos como los Rayos X, los isótopos radiactivos y el microscopio electrónico son de gran valor en el descubrimiento de los secretos de las proteínas y genes. Los hospitales modernos están equipados con laboratorios en los cuales se utilizan abundantemente las técnicas físicas (ultrasonidos, bombas de cobalto, resonancia magnética nuclear, fibras ópticas, etc.).

La QUÍMICA, por su parte, a partir de Dalton y Lavoisier inicia una cierta dependencia conceptual con la Física. Puede decirse que el desarrollo de las dos Ciencias, ahora como en el pasado, presenta una gran interdependencia. De hecho, las fronteras entre la Química y la Física no siempre están claras.

Bibliografía

M. Alondo y E. J. Finn, Física (Addison-Wesley Iberoamericana, Wilmington, 1995).

Profesiones: La Física. Hablando con Juan Rojo (Acento Editorial. Madrid, 1994).

Posted in Asignatura, Divulgación | Tagged , | Comments Off on Física y Ciencias Experimentales

Los 72 sabios inscritos en la Torre Eiffel

Se conocen como los 72 sabios inscritos en la torre Eiffel (en francés, 72 savants inscrits sur la tour Eiffel) o más sencillamente, sabios de la torre Eiffel, a los nombres (en realidad, apellidos) que Gustave Eiffel hizo grabar en la torre Eiffel en el momento de su construcción. Corresponden a científicos, ingenieros e industriales franceses que realizaron aportaciones relevantes en sus campos, entre 1789 y 1889, y que eran y son la gloria de la ciencia y la técnica de Francia del siglo XIX.

Los nombres grabados se encuentran en los entrepaños de las ménsulas que soportan la primera línea de balcones, justo encima del primer arco a razón de 18 nombres por cada lado (las del Trocadero, Escuela Militar, Grenelle y La Bourdonnais​). Los nombres fueron pintados en varias ocasiones a comienzos del siglo XX y restaurados en 1986-1987 por la Société Nouvelle d’exploitation de la Tour Eiffel, la compañía contratada por entonces para operar todos los negocios relacionados con la torre (actualmente se denomina SETE). La torre y sus derechos son propiedad de la ciudad de París. Las letras, de 60 cm de altura, se decoraron originariamente en oro.

MÁS INFORMACIÓN

Posted in Biografías, Divulgación, Historia de la Física | Tagged , , | Comments Off on Los 72 sabios inscritos en la Torre Eiffel

Tema 8. Corriente eléctrica

Este tema está dedicado al estudio de la corriente eléctrica, es decir, al estudio del movimiento de la carga eléctrica de una región a otra. El tema comienza con una descripción de la naturaleza de la corriente eléctrica, introduciendo los conceptos de intensidad y densidad de corriente. La intensidad de corriente es una magnitud escalar que representa la carga que fluye a través de la sección de un conductor por unidad de tiempo, mientras que la densidad de corriente es una magnitud vectorial cuyo flujo a través de una determinada superficie es precisamente la intensidad de la corriente. Un aspecto importante es la expresión que relaciona la densidad de corriente con magnitudes microscópicas de ésta como son el número de portadores de carga por unidad de volumen, la carga de cada portador y su velocidad de arrastre o desplazamiento.

Seguidamente se estudia la ley de Ohm y se introduce el concepto de resistencia y las expresiones para la resistencia equivalente de resistencias en serie y en paralelo. Utilizando la expresión del vector densidad de corriente se llega a una ecuación vectorial para la ley de Ohm que relaciona los vectores densidad de corriente y campo eléctrico aplicado mediante la conductividad o su inversa la resistividad. Es importante presentar algunos valores numéricos de la conductividad (o de la resistividad) para conductores, semiconductores y aislantes, así como señalar que mientras que la resistividad de un conductor metálico aumenta con la temperatura, la de un semiconductor disminuye cuando aquélla se incrementa.

La existencia de una corriente eléctrica a través de conductores que constituyen un circuito eléctrico implica una disipación de energía en forma de calor por efecto Joule, por lo que para mantener una corriente son necesarios otros elementos que aporten energía eléctrica al circuito. Ésta es la función de los generadores, dispositivos capaces de transformar algún tipo de energía en energía eléctrica, y que vienen caracterizados por su fuerza electromotriz.

Finalmente, se describe brevemente la utilización de los amperímetros y voltímetros como instrumentos de medida de intensidades y diferencias de potencial en diferentes montajes.

Posted in Asignatura, Temas | Tagged , | Comments Off on Tema 8. Corriente eléctrica