Tema 2 (Ampliación de Física): Cinemática tridimensional del sólido rígido

El movimiento tridimensional de un sólido rígido es mucho más complejo que el movimiento plano. Los puntos del cuerpo se desplazan en el espacio tridimensional y además las direcciones de los vectores velocidad angular y aceleración angular varían con el tiempo. Recordemos que en movimiento plano de un sólido rígido las direcciones de los vectores y no cambian, manteniéndose siempre perpendiculares al plano del movimiento.

En este caso el tratamiento vectorial no sólo es útil, sino estrictamente necesario para el estudio del movimiento tridimensional de un sólido rígido.

Antes de analizar el movimiento tridimensional de un sólido rígido o bien el caso particular de su rotación en torno a un punto fijo, vamos a considerar algunos aspectos de las rotaciones de cuerpos rígidos en tres dimensiones. De este modo nos familiarizaremos con algunas propiedades de los desplazamientos rotacionales.

En el caso de la rotación en torno a un punto fijo, cada punto del sólido se mueve en una superficie esférica centrada en ese punto.

Posted in Ampliación de Física, Asignatura, Grado en Ingeniería Robótica, Temas | Tagged , , , | Comments Off on Tema 2 (Ampliación de Física): Cinemática tridimensional del sólido rígido

Tema 3. Trabajo y energía

En este tema se tratan dos de los conceptos más importantes de la Física, “trabajo” y “energía”, y que irán apareciendo en todos los temas del programa de la asignatura La importancia del concepto de energía surge de la ley de conservación de la energía: la energía es una cantidad que se puede convertir de un tipo de energía a otro, pero no puede crearse ni destruirse.

En primer se define el trabajo realizado por una fuerza, tanto en el caso en el que la fuerza es constante y el movimiento rectilíneo como en el caso general de fuerza variable y movimiento curvilíneo general. Otro concepto importante es la potencia, que no es otra cosa que la rapidez con la que se realiza trabajo. El concepto de trabajo permite, a su vez, definir la energía cinética y obtener el teorema de la energía cinética que indica que el trabajo efectuado por la fuerza neta sobre una partícula es igual al cambio de la energía cinética de la partícula. Es importante señalar que la energía cinética es la energía que tiene un objeto debido a su movimiento y que al estar moviéndose es capaz de producir un trabajo modificando su energía cinética.

A continuación se estudian las fuerzas conservativas y no conservativas y se introduce la energía potencial, que no está asociada al movimiento de una partícula sino, como en el caso de una fuerza gravitatoria, está asociada con la posición de la partícula en el campo gravitatorio. Otro ejemplo de energía potencial de interés es la energía potencial elástica. Para el caso de fuerzas conservativas se introduce el principio de conservación de la energía mecánica, que es una de las leyes fundamentales de la naturaleza. Es importante señalar que cuando un sistema realiza trabajo sobre otro, se transfiere energía entre los dos sistemas, que existen muchas formas de energía y que si la energía de un sistema se conserva, su energía total no cambia aunque parte de ella puede que cambie de forma o naturaleza, pasando de un tipo a otro. La generalización de la ley de conservación de la energía cuando sobre el sistema actúa también fuerzas no conservativas -para las que no existe una energía potencial- es inmediata.

Resulta importante indicar que una forma de transferir energía (absorbida o cedida) de un sistema es intercambiar trabajo con el exterior. Si está es la única fuente de energía transferida (la energía también puede transferirse también cuando hay un intercambio de calor entre un sistema y sus alrededores debido a una diferencia de temperatura, como se verá en el tema “Calor y temperatura”), la ley de conservación de la energía se expresa diciendo que el trabajo realizado sobre el sistema por las fuerzas externas es igual a la variación experimentada por la energía total del sistema. Éste es el teorema trabajo-energía y es un instrumento poderoso para estudiar una amplia variedad de sistemas.

El último apartado del tema finaliza se centra el estudio de los choques, tanto elásticos como inelásticos.

Bibliografía

Alonso, M. y Finn, E. J., Física (Addison-Wesley Iberoamericana, Wilmington, 1995). Cap. 9.

Young, H. D. y Freedman, R. A., Física Universitaria (Sears-Zemansky), Vol. I (Addison-Wesley, México, 2009). Caps. 6, 7 y 8.

Beléndez, A., Bernabeu, J. G. y Pastor, C., Temas de Física para Ingeniería: Trabajo y energía (1988).  http://hdl.handle.net/10045/11344

Tipler, P. A. y Mosca, G., Física para la Ciencia y la Tecnología, Vol. I (Reverté, Barcelona, 2005). Caps. 6 y 7.

Gettys, W. E., Keller, F. J. y Skove, M. J., Física Clásica y Moderna (McGraw-Hill, Madrid, 1991). Caps. 8 y 9.

González, C. F., Fundamentos de Mecánica (Reverté, Barcelona, 2009). Cap. 5.

Posted in Asignatura, Temas | Tagged , | Comments Off on Tema 3. Trabajo y energía

Tema 2. Dinámica

En este tema se estudia la Dinámica, es decir, la parte de la Mecánica que analiza las relaciones entre el movimiento y las causas que lo producen, es decir, las fuerzas. En Física, las causas de las interacciones entre los cuerpos, estén o no en contacto, sean próximos o lejanos, se describen mediante fuerzas. El tema comienza con una breve descripción de distintos tipos de fuerzas (de contacto, de rozamiento, normal, de tensión, de largo alcance, etc.) y de las fuerzas fundamentales de la Naturaleza (interacciones gravitatoria, electromagnética, fuerte y débil).

Seguidamente se presentan las tres leyes de Newton, que están establecidas en términos de la fuerza y la masa. Estas leyes son la ley de la inercia, la ecuación fundamental de la dinámica y el principio de acción y reacción. Un aspecto importante que hay que tener en cuenta es que el concepto de sistema de referencia inercial es fundamental para las leyes del movimiento de Newton. La segunda ley de Newton, que relaciona fuerza, masa y aceleración, es una ley fundamental de la Naturaleza, la relación básica entre fuerza y movimiento y, al igual que la primera ley, sólo es válida para sistemas de referencia inerciales. En cuanto a la tercera ley de Newton, es importante comprender que las fuerzas de acción y reacción están aplicadas a cuerpos diferentes, por lo que aunque son iguales y opuestas, no se equilibran.

Como ejemplo de fuerza de gran interés se estudia la fuerza gravitatoria -una de las fuerzas fundamentales de la Naturaleza-, la ley de la gravitación universal y el ejemplo más conocido de atracción gravitacional, el peso, es decir, la fuerza con que la Tierra atrae a un objeto.

Un apartado de gran importancia en este tema es la aplicación de las leyes de Newton a la resolución de problemas de Dinámica. Se analizan problemas con poleas, planos inclinados, tensiones y cuerdas, rozamiento, curvas peraltadas, etc., dejando claro el procedimiento general de cómo deben resolverse estos problemas. Es importante analizar ejemplos en los que la magnitud de la fuerza normal ejercida sobre un cuerpo no siempre es igual a su peso. En todos los casos es necesario, examinar con precisión las relaciones entre las fuerzas y el movimiento producido. En la resolución de problemas es indispensable dibujar correctamente el diagrama de cuerpo libre en el que se muestra el cuerpo en estudio solo, libre de su entorno, con los vectores correspondientes a todas las fuerzas que actúan sobre el cuerpo.

El tema finaliza con el estudio de dos conceptos de gran importancia en Física, como son los momentos lineal y angular así como sus leyes de conservación. Es necesario comprender que la segunda ley de Newton también puede expresarse en términos del momento lineal, de hecho, la fuerza neta que actúa sobre una partícula es igual ala rapidez de cambio de su momento lineal. Esta expresión de la segunda ley de Newton que relaciona la fuerza neta aplicada sobre un cuerpo y su momento lineal es la que hay que utilizar cuando se analizan, por ejemplo, los sistemas de masa variable.

Bibliografía

Alonso, M. y Finn, E. J., Física (Addison-Wesley Iberoamericana, Wilmington, 1995). Caps. 6 y 7.

Beléndez, A., Bernabeu, J. G. y Pastor, C., Temas de Física para Ingeniería: Dinámica del punto material (1988).  http://hdl.handle.net/10045/11343

Tipler, P. A. y Mosca, G., Física para la Ciencia y la Tecnología, Vol. I (Reverté, Barcelona, 2005). Caps. 4 y 5.

Young, H. D. y Freedman, R. A., Física Universitaria (Sears-Zemansky), Vol. I (Pearson Educación, México, 2009). Caps. 4 y 5.

Gettys, W. E., Keller, F. J. y Skove, M. J., Física para Ciencias e Ingeniería, Vol. I (McGraw-Hill, Madrid, 2005). Caps. 5 y 6.

González, C. F., Fundamentos de Mecánica (Reverté, Barcelona, 2009). Cap. 3.

Posted in Asignatura, Temas | Tagged , | Comments Off on Tema 2. Dinámica

Tema 1 (Ampliación de Física): Cinemática plana del sólido rígido

En este tema veremos la cinemática plana de un sólido rígido. Primero definimos un solido rígido como aquel cuerpo en el que la separación entre dos puntos cualesquiera es fija e independiente del tiempo. Si las distancias entre dos puntos cualesquiera son fijas, también lo serán los ángulos determinados por toda tripleta de puntos A, B y C.

En la cinemática de la partícula, para describir completamente el movimiento, basta con conocer en cada instante su situación, es decir, las coordenadas del unto donde se encuentra la partícula. Sin embargo, en la cinemática del sólido rígido, la descripción completa de su movimiento exige que se den la posición y la orientación del cuerpo. Es este caso intervienen magnitudes lineales como angulares.

Existen cinco tipos generales de movimiento de un sólido rígido: traslación, rotación alrededor de un eje fijo, movimiento plano general, rotación en torno a un punto fijo y movimiento general.

(a) Traslación: La orientación de todo segmento rectilíneo del sólido rígido se mantiene constante durante el movimiento. Todos los puntos del cuerpo rígido se mueven a lo largo de trayectorias paralelas. Si estas trayectorias son líneas rectas es una traslación rectilínea; si son líneas cuervas, una traslación curvilínea (Figura 2).

(b) Rotación alrededor de un eje fijo: Los puntos del sólido se mueven en planos paralelos a lo largo de círculos centrados sobre el mismo eje fijo. Si este eje, llamado eje de rotación, intersecta al cuerpo, los puntos de dicho eje tienen velocidad cero y aceleración cero.

(c) Movimiento plano general: En un movimiento plano cada punto del sólido permanece en un plano. Como ejemplos se pueden mencionar la traslación coplanaria y la rotación en torno a un eje fijo. Los demás tipos de movimientos planos se denominan movimiento plano general.

(d) Rotación en torno a un punto fijo: Se trata de un movimiento tridimensional en el que un punto de sólido permanece fijo.

(e) Movimiento general: Cualquier movimiento del sólido rígido que no entra en las categorías anteriores se denomina movimiento general.

Posted in Ampliación de Física, Asignatura, Grado en Ingeniería Robótica, Temas | Tagged , , , | Comments Off on Tema 1 (Ampliación de Física): Cinemática plana del sólido rígido

Tema 1. Cinemática

La Mecánica estudia el movimiento y su relación con las causas que lo producen. La Mecánica es la más antigua rama de la Física y, sin lugar a dudas, es también la más elaborada. Sus modelos han sido aplicados a otros campos, incluso fuera de la Física, de ahí su interés como fundamento para entender otras parcelas científicas y técnicas.

Primeramente es conveniente describir el movimiento, sin considerar las causas del mismo, a lo que se dedica la parte de la Mecánica conocida como Cinemática. A este estudio se dedica este tema, considerando el caso de la cinemática de la partícula o punto material, es decir, un cuerpo cuyo tamaño y forma no tienen importancia en la resolución de un problema mecánico determinado.

En este tema se repasan conceptos como el vector de posición, el vector desplazamiento y la velocidad y aceleraciones medias e instantáneas. Un aspecto importante a tener en cuenta es que el vector velocidad es un vector tangente a la trayectoria de la partícula en cada punto. Se analizan las componentes intrínsecas de la aceleración: aceleración tangencial y aceleración normal o centrípeta. La aceleración tangencial tiene en cuenta la variación del módulo del vector velocidad con el tiempo, mientras que la aceleración normal expresa la variación de la dirección del vector velocidad con el tiempo. La aceleración normal está dirigida hacia el centro de curvatura de la trayectoria en cada punto y es inversamente proporcional al radio de curvatura de esta trayectoria. Obviamente, para un movimiento rectilíneo no hay aceleración normal y para uno circular el radio de curvatura de la trayectoria es constante.

Seguidamente se estudia el movimiento rectilíneo y algunos casos particulares  como el movimiento rectilíneo uniforme en el que la aceleración es nula y la velocidad constante y el movimiento rectilíneo uniformemente acelerado, caracterizado porque la aceleración es constante. Otro tipo de movimiento de interés que también se estudia en este tema es el movimiento circular en el que se analizan los conceptos de velocidad y aceleración angulares y su relación con la velocidad y aceleración lineales. Como ejemplos se estudian el movimiento circular uniforme y el movimiento circular uniformemente acelerado. Una cuestión importante a tener en cuenta son las relaciones vectoriales entre la velocidad angular, la velocidad lineal, la aceleración angular y la aceleración lineal.

El tema finaliza con el estudio del movimiento parabólico, como es el movimiento de un proyectil, el cual permite ver cómo, para su análisis, se puede descomponer un movimiento, en este caso en dos dimensiones, como la superposición de dos movimientos unidimensionales independientes en dos direcciones perpendiculares. Cuestiones como el alcance y la altura máxima también son analizadas.

Es importante tener en cuenta en todo el desarrollo del tema que el movimiento es un concepto relativo y debe por tanto referirse siempre a un sistema particular de referencia, elegido por el observador.

Bibliografía

Alonso, M. y Finn, E. J., Física (Addison-Wesley Iberoamericana, Wilmington, 1995).  Caps. 3, 4 y 5.

Beléndez, A., Bernabeu, J. G. y Pastor, C., Temas de Física para Ingeniería: Cinemática del punto material (1988). http://hdl.handle.net/10045/11342

Tipler, P.  A. y Mosca, G., Física para la Ciencia y la Tecnología,  Vol. I (Reverté, Barcelona, 2005). Caps. 2 y 3.

Young, H. D. y Freedman, R. A., Física Universitaria (Sears – Zemansky),  Vol. I (Pearson Educación, México, 2009). Caps. 2 y 3.

Gettys, W. E., Keller, F. J. y Skove, M. J.,  Física para Ciencias e Ingeniería, Vol. I (McGraw-Hill, Madrid, 2005). Caps. 3 y 4.

Posted in Asignatura, Temas | Tagged , | Comments Off on Tema 1. Cinemática

Comienza la asignatura “Fundamentos Físicos de la Ingeniería I” del Grado en Ingeniería en Sonido e Imagen en Telecomunicación de la UA

Contenidos para el curso 2019-20

Tema 1. Cinemática

  • Introducción
  • Posición, velocidad y aceleración
  • Componentes intrínsecas de la aceleración
  • Movimientos rectilíneos
  • Movimientos circulares
  • Composición de movimientos. Tiro parabólico

Tema 2. Dinámica

  • Introducción
  • Leyes de Newton
  • Fuerza debida a la gravedad. Peso
  • Aplicación de las leyes de Newton
  • Momento lineal y momento angular

Tema 3. Trabajo y energía

  • Introducción
  • Trabajo y potencia
  • Energía cinética. Teorema de la energía cinética
  • Fuerzas conservativas. Energía potencial
  • Conservación de la energía mecánica
  • Choques

Tema 4. Calor y temperatura

  • Introducción
  • Equilibrio térmico y principio cero de la Termodinámica
  • Termómetros y escala de temperaturas del gas ideal
  • Ley de los gases ideales
  • Dilatación térmica
  • Cantidad de calor: capacidad calorífica y calor específico
  • Calorimetría, cambios de fase y calor latente
  • Propagación del calor por conducción
  • Propagación del calor por convección y radiación

Tema 5. Termodinámica

  • Introducción
  • Trabajo
  • Funciones de estado y ecuaciones de estado
  • Primer principio de la Termodinámica. Energía interna
  • Algunas aplicaciones del primer principio
  • Capacidades caloríficas de los gases
  • Máquinas térmicas y segundo principio de la Termodinámica
  • Rendimiento de las máquinas térmicas y frigoríficas
  • Ciclo de Carnot
  • Temperatura termodinámica
  • Entropía. Cálculo de variaciones de entropía
  • Entropía y segundo principio

Tema 6. Campo eléctrico

  • Introducción
  • Ley de Coulomb. Fuerza eléctrica entre cargas puntuales
  • Campo eléctrico
  • Movimiento de cargas en un campo eléctrico
  • Energía potencial y potencial eléctrico
  • Relación entre el campo eléctrico y el potencial
  • Flujo del campo eléctrico. Ley de Gauss
  • Cálculo del campo eléctrico mediante la ley de Gauss

Tema 5. Materiales y condensadores

  • Introducción
  • Bandas de energía electrónica
  • Conductores, aislantes y semiconductores
  • Semiconductores intrínsecos y extrínsecos
  • Ecuación del semiconductor y neutralidad eléctrica
  • Conductores en equilibrio electrostático
  • Capacidad y condensadores
  • Condensadores en serie y en paralelo
  • Energía electrostática
  • Dieléctricos

Tema 8. Corriente eléctrica

  • Introducción
  • Corriente y movimiento de cargas
  • Densidad de corriente
  • Ley de Ohm. Resistencia. Asociación de resistencias
  • Conductividad y resistividad
  • Aspectos energéticos de la corriente eléctrica. Ley de Joule
  • Amperímetros y voltímetros
  • Fenómenos de transporte en semiconductores
Posted in Asignatura, Materiales docentes, Temas | Tagged , , | Comments Off on Comienza la asignatura “Fundamentos Físicos de la Ingeniería I” del Grado en Ingeniería en Sonido e Imagen en Telecomunicación de la UA

Comienza la asignatura “Ampliación de Física” del Grado en Ingeniería Robótica de la UA

Contenidos para el curso 2019-20

Tema 1. Cinemática plana del sólido rígido

  • Introducción
  • Traslación. Movimiento plano. Rotación alrededor de un eje fijo
  • Movimiento plano general. Velocidades absoluta y relativa
  • Centro instantáneo de rotación en el movimiento plano
  • Aceleraciones absoluta y relativa en el movimiento plano
  • Movimiento plano relativo a ejes en rotación. Aceleración de Coriolis

Tema 2. Cinemática tridimensional del sólido rígido

  • Introducción
  • Teorema de Euler. Rotaciones finitas e infinitesimales
  • Rotación en torno a un punto fijo
  • Movimiento general de un sólido rígido en el espacio
  • Eje instantáneo de rotación y mínimo deslizamiento
  • Movimiento tridimensional relativo a ejes en rotación
  • Derivada respecto al tiempo de un vector con respecto a un sistema fijo o a un sistema trasladante-rotatorio

Tema 3. Geometría de masas

  • Introducción
  • Centro de masas, centro de gravedad y centroide
  • Momento de inercia
  • Radio de giro
  • Teoremas de Steiner para momentos de inercia
  • Productos de inercia
  • Momentos principales de inercia
  • Momentos de inercia de superficies planas

Tema 4. Estática del sólido rígido

  • Introducción
  • Condiciones de equilibrio
  • Reacciones de enlace
  • Resolución de problemas. Diagrama del sólido libre
  • Fuerzas interiores en miembros estructurales

Tema 5. Dinámica plana del sólido rígido

  • Introducción
  • Ecuaciones del movimiento plano de un sólido rígido
  • Traslación, rotación y movimiento plano general de un sólido rígido
  • Trabajo de fuerzas y pares que se ejercen sobre un sólido rígido
  • Energía cinética de un sólido rígido en movimiento plano
  • Conservación de la energía
  • Momento angular de un sólido rígido en movimiento plano

Tema 6. Dinámica tridimensional del sólido rígido

  • Introducción
  • Movimiento tridimensional de un sólido rígido. Ecuaciones de Euler
  • Momento angular en el movimiento tridimensional
  • Principio del impulso y cantidad de movimiento
  • Energía cinética de un sólido rígido en tres dimensiones
  • Conservación de la energía
  • Movimiento de un giróscopo
  • Movimiento sin par de torsión

Tema 7. Vibraciones mecánicas

  • Introducción
  • Vibraciones libres no amortiguadas
  • Vibraciones libres amortiguadas
  • Vibraciones forzadas
Posted in Ampliación de Física, Asignatura, Grado en Ingeniería Robótica, Materiales docentes, Temas | Tagged , , , | Comments Off on Comienza la asignatura “Ampliación de Física” del Grado en Ingeniería Robótica de la UA

Dennis Gabor, el ‘padre de la holografía’, nació el 5 de junio de 1900

Dennis Gabor (1900-1979) nació el 5 de junio de 1900 en Budapest, Hungría, un país que entonces formaba parte de la Monarquía Dual Austro-Húngara. Aunque la física le fascinaba, decidió estudiar ingeniería. Más tarde escribió, «ser físico no era todavía una profesión en Hungría y ¿con apenas media docena de cátedras de física en todo el país, quién podría haber sido tan presuntuoso para aspirar a una de ellas?». Al cumplir los dieciocho años fue enviado al norte de Italia para servir en la artillería austro-húngara en los últimos meses de la Primera Guerra Mundial y finalizada la contienda inició estudios de ingeniería en Budapest que concluyó en la Universidad Técnica de Berlín donde obtuvo el Título de Ingeniero Eléctrico en 1924 y el de Doctor Ingeniero en 1927 con una tesis doctoral relacionada con el desarrollo de uno de los primeros oscilógrafos de rayos catódicos de alta velocidad.

El autor junto a la placa situada en la casa natal de Dennis Gabor en Budapest.

El camino hacia la holografía

La holografía comienza a dar sus primeros pasos en 1947 en un laboratorio de una empresa de ingeniería eléctrica en el que Gabor trabajaba en la mejora del microscopio electrónico. Con este instrumento se había aumentado en cien veces el poder de resolución de los mejores microscopios ópticos y se estaba muy cerca de resolver las estructuras atómicas, pero los sistemas no eran lo bastante perfectos. Su limitación estaba relacionada con la aberración esférica de las lentes magnéticas del microscopio. Para resolver este problema Gabor se preguntó: «¿Por qué no tomar una mala imagen electrónica, pero que contenga la información ‘total’ de la misma, reconstruirla y corregirla mediante métodos ópticos?».

La contestación a esta pregunta se le ocurrió mientras esperaba para jugar un partido de tenis el Domingo de Pascua de 1947  y consistía en considerar un proceso en dos etapas. En la primera etapa, el registro, produciría el diagrama interferencial entre el haz de electrones objeto (onda objeto) y un “fondo coherente” (onda de referencia) que registraría en una placa fotográfica. A este interferograma Gabor lo llamó holograma, del griego ‘holos’, que significa ‘la totalidad’, pues contiene la información total (la amplitud y la fase) de la onda objeto. En la segunda etapa, la reconstrucción, iluminaría el holograma con luz visible, reconstruiría el frente de onda original y podría corregirlo por métodos ópticos para obtener una buena imagen. Así pues, los principios físicos de la holografía están basados en la naturaleza ondulatoria de la luz y son la interferencia (en la etapa de registro) y la difracción (en la etapa de reconstrucción). Gabor dedicó el resto del año trabajando en su ‘nuevo principio de microscopía’ (new microscopic principle).

Para conseguir franjas de contrastadas es necesario disponer de una fuente de iluminación de gran coherencia, la cual no existía en tiempos de Gabor. A pesar de ello, en 1948 realizó el primer holograma con luz proveniente de una lámpara de mercurio con un filtro para la luz verde, una de las mejores fuentes de luz coherente antes del láser. El objeto de este primer holograma era una pequeña diapositiva circular de 1.4 mm de diámetro que contenía los nombres HuygensYoung y Fresnel, tres físicos a los que Gabor consideraba importantes por haber puesto las bases de su técnica a la que denominó ‘reconstrucción del frente de onda’ (wave-front reconstruction). Estos hologramas no resultan impresionantes vistos hoy en día, pero constituyeron una demostración convincente de un nuevo e interesante principio de la óptica.

Seguir leyendo en OpenMind

Posted in Biografías, Día Internacional de la Luz, Divulgación, Historia de la Física, Premios Nobel | Tagged , , , , | Comments Off on Dennis Gabor, el ‘padre de la holografía’, nació el 5 de junio de 1900