Home » mediterranean

Category Archives: mediterranean

Marine campaign to find the source of the earthquakes in the Patibulo fishing area (Alicante coast)

At 30 nautical miles to the E of Cabo de Santa Pola (about 55 km) there is a submarine seamount called by the southern Alicante fishermen as the area of the Patibulo (the Gallows). It is an area with a rocky and elevated seabed, with abundant fishing.

Curiously, not only are fish abundant, but from time to time the seismographs of the Alicante University Seismic Record Unit record earthquakes there and along the imaginary line that joins it with Cabo de Santa Pola, to the north of Tabarca Island. In the coastal area to the north of said island, an active fault has already been located through high-resolution seismic as a possible cause of these. It was missing to know if in the Patibulo, said fault continues or another one also active.

Throughout the year 2022, attempts have been made to reach the area from Torrevieja with marine seismic equipment to study the area. It started in the month of April and something always happened, a fuse, a cable, a blown chip, bad weather… After much insistence and returning empty-handed, on December 6, 7 and 8, there was a good weather window and the appliances worked. From the port of Torrevieja with the boat “Rosa de Abril”, we were making some data collection lines in the direction of the Patibulo and on the last day we reached our objective. Almost 80 km of data lines were obtained over 3 days.

El Patíbulo is the westernmost seamount of an alignment of elevations called Alicante Highs, after the geological map of the Alicante platform (Catafau Alcántara et al., 1994). There are at least three needles whose base is 300 m deep and which rise to about 135 m, the most to the W (Patíbulo). The second is the highest and reaches 125 m (some fishermen say 90 m), the third at 154 m. The image of the geological map of the Alicante platform is attached. To the north of these thresholds begins a submarine canyon that is “unofficially” known as the “Alicante canyon” and that descends to the plain to the north of these.

Alicante Heights, this profile does not pass through the tops of the heights, it is a bathymetric profile where some of them are located (Taken from Catafau Alcántara et al., 1994).

The high-resolution seismic image shows a fault scarp on the seafloor, indicating that the fault is currently active. The darker area marked by the plane is a more cemented area, probably due to the flow of fluids along the plane. Layered reflectors are also observed, indicating that they are sedimentary rocks and not volcanic rocks like other seamounts in the southern Balearic Islands.

Fault in the Gallows area. A fault scarp is observed on the surface of the seabed and its prolongation in depth. The layers on the right cut off at the fault. Raw image obtained during acquisition.

With the preliminary data that has been obtained, it can be said that the Patibulo is a structural height raised by faults. They are active because they protrude from the bottom and because it seems that they are associated with leaks of fluids that mineralize near the fault plane.

We look forward to studying the interesting data obtained.

Reference: Catafau Alcántara, E., Gaytán de Ayala y Bolín, M., Pereda Alonso, I., Vázquez Garrido, J.T., Wandossell Santamaría, J. (1994): Mapa geológico de la Plataforma Continental Española y Zonas adyacentes. Escala 1:200 000. Hoja nº 72-73(Elche-Alicante). ITGE, 73 p.

Thinkinazul project

Messinian Group will study the recent marine sediment on the Alicante coast. The new EU funded Thinkinazul project of the Generalitat Valenciana, coded as:  GVA/Thinkinazul/2021/039.

The project will study changes in the coast-line, coastal risk and coastal aquifers. It has started on January 1, 2022 and will be active until November 18, 2024. The advances of the research will be announced in future posts of this blog. The leadership of the project is carried out by researches of the MIES is a Multidisciplinary Research Institute for Environmental Studies “Ramón Margalef” (Instituto Multidisciplinario para el estudio del Medio “Ramon Margalef”, IMEM in Spanish) of the Alicante University and integrate researches of 10 universities and research institutions.

Generalitat Valenciana Thinkinazul Project “aquaCHANGE” have been divided in 7 Working Party (WP) and framed in WP1: “Observation and monitoring of the marine and coastal environment”.

 

Field Trip to Almeria

This year the students of the third course of Marine sciences of the Alicante University visit the Sorbas basin, Cabo de Gata, and Mesa de Roldán on November 4th and 5th of 2021.

University of Alicante Marine Geology course students (2021-22)

The picture show the student visiting the Torregarcia beach and the Roman remains of a cetaria (a marine factory).

The professors in charge were  Antonio Estévez, Manuel Martín-Martín and José Enrique Tent-Manclús.

Monduver Paleolandslide as its relationship with the human use of the Parpalló Cave (Valencia province, Spain)

The Monduver massif located 50 km to the south-east of Valencia city has a well-developed Karst geomorphology and where it stands out the Barx Polje. The Highest point of the Massif, Moduver 841 m a.s.l., is just 10 km inland from the Mediterranean coast. The Parpallo Cave located at the southern part of the polje is one of the most important Palaeolithic sites, not only in Spain, but in the world due to the collection of decorated plaquettes of Palaeolithic portable art. The collection covers the entire archaeological sequence from the Gravettian to the Magdalenian periods (26000–11000 years BP). The Barx polje has two subbasins: Barx to the north and La Drova to the south, and the second one is partly capture at the south by the Caldereta Creek. In this work is proposed than the La Drova subbasin was formed by a major landslide of the western side of the Monduver massif producing a natural dam of the Les Voltes Creek. Lately, the La Drova subbasin was filled by the terra rossa product of the limestone dissolution of the polje basin, as can be see today in the sides of the captured La Drova subbasin. The filling of the subbasin was to a level higher that the Barx subbasin as the today drainage of the uncaptured La Drova runs to this last one. Three 3d model landscape figures has been made to explain its evolution. The archeological sequence of the Parpallo Cave could be related with the infilling of the subbasin period and the landslide could take place before the human use of the cave.

Panoramic view from the Parpalló Cove entrance. The face-shape mountain is the paleoslide

Cite as: Tent-Manclús, J. E. y Jordá Guijarro, J. (2021): Monduver Paleolandslide as its relationship with the human use of the Parpalló Cave (Valencia province, Spain). LAC1+1, Landscape archaeology conference, 8-11 june 2021 Book of Abstracts. 14 p.

Pottery clays quarries in the domain territory of ancient Ilici (Alicante, SE Spain)

The Alcudia archaeological site correspond to the ancient city of Ilici (Roman Colonia Iulia Ilici Augusta). The site consists of an succession of Iberian, roman, byzantine, Visigoth and Moorish settlements (since the 5th centuries BC to the 8th century AC) on the top of a hill that in the 1st century BC was surrounded by a wall and nearby the Vinalopó river mouth in the Bajo Segura Bay. This bay was known in Roman times as the sinus Ilicitanus. Different clays of the area nearby to the site have been sampled, analysed and then compared with analysis of some pottery remains of the different periods of the Alcudia settlement. The clays have been analysed by micro-X Ray fluorescence (µXRF) and by infrared spectrometry by Fourier transformed (ATR-FTIR), as crude, mixed in different proportions, and then heated to a different temperature until 900ºC. The old remains show affinities with the clays sampled from the Eastern part indicating a W-E influence, as the northern coast of the sinus ilicitanus. During the roman period and later the pottery was made using the nearby clays located just to the north of the site clearly influenced by the via Augusta. The topography to the north of the site is formed by low but steep hills and small creeks that possibly limit the commerce to the north, so the commerce follows the marine plain coast of the northern sinus ilicitanus. The opening of the roman road via August along the Vinalopó Valley favoured the use of pottery clays from the interior of the territory.

Paleogeographic map of the area north of the sinus ilicitanus. The clays used for pottery were obtained from the area parallel to the north shore of the sinus. Pottery: Variable carbonate no sílices

Cite as: Jordá Guijarro, J., Cerdán Sala, M., Sánchez-Sánchez, A., Ronda Femenia A., Tendero Porras, M. and Tent-Manclús, J. E. (2021): Pottery clays quarries in the domain territory of ancient Ilici (Alicante, SE Spain). LAC1+1, Landscape archaeology conference, 8-11 june 2021 Book of Abstracts. 45 p.

The development of the sinus illicitanus (II)

Change on the coastline of the Southern Alicante region

Tent-Manclús, J. E.

The Bajo Segura Region is a plain dominated by the Segura River with the mouth towards the Mediterranean Sea on Guardamar. The Hondón and Salinas de Santa Pola lagoons inside the plain, are the remains of a major marine bay known in the Roman times as the sinus ilicitanus. Offshore the Region geophysical data has permitted to model the coastline change and study the underwater marine terraces. 183 maps have been made from the 15000 BP until Today (100 year apart the older ones and 25 years for the recent ones). The coastline has migrated between 20 and 50 km onshore and then offshore about tens of meters to 35 km shaping today coastline. The sea level at 15000 BP was located 70 m below today sea-level (btsl). During the Younger Dryas (13500 to 11700 BP) varies around 60-66 m btsl then increase until 21 m btsl and stopped during the 8.2 ka event (8500 BP to 8200 BP). Again, the level increases first fast and then slowly but moving fast horizontally (near 35 km for 1000 years) developing the sinus ilicitanus when the marine transgression enters the plain about 4200 BC. The Segura River developed a delta in the today area of Orihuela, 35 km to the East of its today river mouth in Guardamar. The river until around the year 1400 AD developed a fingering (bird-foot) quite variable delta in the center of the sinus, most of the major irrigation canals (acequias) could correspond to the ancient delta-channels. Around the XV century major events changed the sinus basin producing the river mouth move to the present location. The sinus open communication with the Mediterranean Sea was closed around the XVIII century by sand bars, first the southern of Guardamar and then the northern on Santa Pola.

Cite as:

Tent-Manclús, J. E. (2021): Change on the coastline of the Southern Alicante region. LAC1+1, Landscape archaeology conference, 8-11 june 2021 Book of Abstracts. 222 p.

 

 

 

Marine Geology field trip to Sorbas (post-pandemic)

This year the students of the third course of Marine sciences of the Alicante University, could not go for a field trip on November as previous years, visiting the Sorbas basin, Cabo de Gata, and Hoyazo de Nijar. When the courses ended on May most of the students did the visit. The visit took place on 27 and 28 of May of 2021.

The field trip was strange because of the new normality and also the rain comes to Almeria during the visit.

Alicante University students of Marine Sciences in the Sorbas basin

The professors in charge were  Juana Jordá, and José Enrique Tent-Manclús.

The development of the sinus illicitanus (I)

The change of the coastline in the southern part of the province of Alicante for the last 15,000 years have been modeled and described in the work of Tent-Manclus (2013). It is obtained by integrating data from different sources and especially high-resolution seismic profiles of the nearby marine continental shelf. Ten periods have been distinguished in the evolution of the Bajo Segura coastline : 1) 15000 BP- 14600 BP: rapid rise; 2) 14600 BP to 13500 BP: the Older Dryas, slow rise; 3) 13500 BP to 12700 BP: stability and descent; 4) 12700 BP to 11700 BP: the Younger Dryas, descent of the sea ​​level; 5) 11700 BP to 11300 BP: very fast rise; 6) 11300 BP a 8500 BP: rapid rise; 7) 8500 BP = 6500 AC to 8200 BP = 6200 AC: 8.2 ka event stabilization; 8) 6,200 BC to 4,000 BC: rise,  Tabarca Island is form; 9) 4000 BC to 3000 BC: the slow rise due to subsidence sinus ilicitanus forms and 10) 3000 BC to the present day 2000 AD: the sinus ilicitanus desiccates.

Map of the southern Alicante coast area used in the work

Maps at different times are show selected from the 164 maps that have been made. This is a first version of how the coastline evolves in the region. This work It can be a starting point to improve knowledge of the historical landscape evolution..

Map of the South Alicante coast 15000 BP. The sea level was 70 m below today level. The rivers Vinalopo and Segura were running parallel.

The sinus ilicitanus  dries until today, the rest of which are the lagoons of the Fondo and Santa Polo Salinas.

Cite as: Tent-Manclús, J. E. (2013): Cambios de la línea de costa en el Bajo Segura (S de Alicante) en los últimos 15.000 años. Estudios geográficos, 74 (275): 684-702. Doi: 10.3989/estgeogr.201324

Tethyan to Mediterranean Evolution

Message from the Guest Editor

Dear Colleagues,

Several geological modeling studies on the geodynamic and paleogeographic Alpine (Eo-Alpine during the Cretaceous–Paleogene; Neo-Alpine during the Oligocene– Miocene) evolution of the Mediterranean have been published without consensus in the last four decades. Therefore, a Special Issue dedicated to “Tethayan to Mediterranean evolution” seems justified. Studies that consider the geodynamic and/or paleogeographic evolution of the entire Mediterranean area or a part of this area will be welcome. The proposal can be focused on stratigraphic, sedimentological, petrographic, or tectonic data, or geophysical interpretations and reconstructions based on principles of Plate Tectonics using GPlates or similar software. The papers that are published in this Special Issue can contribute to clarifying and updating the state of our knowledge about this controversial theme.

Message from the Editorial Board

T h e Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. The journal aims to provide scholarly research on a range of topics, including ocean engineering, chemical oceanography, physical oceanography, marine biology and marine geosciences. We invite you to publish in our journal sharing your important research findings with the global ocean community.

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: Indexed in the Science Citation Index Expanded in Web of Science, in Inspec (IET) and in Scopus.

CiteScore (2018 Scopus data): 1.76, which equals rank 30/92 in ‘Ocean Engineering’, rank 105/288 in ‘Civil and Structural Engineering’ and rank 77/203 in ‘Water Science and Technology’.

 

Guest Editor:

Prof. Dr. Manuel Martín-Martín

Earth sciences and environment

Department (University of Alicante). Campus Universitario del San Vicente del Raspeig, AP- 99, 03080 Alicante, Spain

manuel.martin.m3@gmail.com

Deadline for manuscript submissions:

10 March 2020