Distribución binomial: un ejemplo de cálculo de probabilidades

En este curso, para resolver problemas relacionados con la distribución binomial se utiliza el  SPSS. Por ejemplo, supongamos que un examen consta de 10 preguntas con 2 posibles respuestas cada una, de las cuales solamente una es correcta.  Si se responde al azar a cada una de las preguntas, hay que calcular una serie de probabilidades.

a) Probabilidad de acertar 5 preguntas exactamente.

b) Probabilidad de acertar al menos 1.

c) Probabilidad de acertar al menos 5.

d) Probabilidad de  contestar correctamente  entre 3 y 6 preguntas en dicho test.

Solución:

Sea X=número de preguntas contestadas correctamente en un test de un total de 10 preguntas.

n=10

p=p(éxito)=p(pregunta contestada correctamente)=0.5, por tanto p permanece constante.

Asumiendo independencia entre las contestaciones de las preguntas, obtenemos que  X~B(10,0.5).

Entonces:

a) P(X=5)=PDF.BINOM(5,10,0.5).

b) P(X≥1)=1-P(X<1)=1-P(X=0)=1-PDF.BINOM(0,10,0.5).

c) P(X≥5)=1-P(X<5)=1-P(X≤4)=1-CDF.BINOM(4,10,0.5).

d) P(3≤X≤6)=P(X≤6)-P(X<3)=P(X≤6)-P(X≤2)=

=CDF.BINOM(6,10,0.5)-CDF.BINOM(2,10,0.5)=0.773437.

Ahora solamente quedaría acceder al SPSS y hacer los cálculos oportunos.  Recordad que a la hora de corregir los ejercicios se le dará mucha importancia al planteamiento, el cual se debe realizar de forma razonada e incluyendo todos los pasos como se ha hecho aquí.