El vídeo “The light that surrounds us” en la ceremonia de clausura del “Año Internacional de la Luz” en México

El vídeo “The light that surrounds us” realizado en la Universidad de Alicante se rá uno de los 68 vídeos/películas realizados en 18 países que se proyectará en el International Year of Light Film Festival que tendrá lugar durante los actos de la ceremonia de clausura del “Año Internacional de la Luz y de las Tecnologías basadas en la Luz” en Mérida (México), los días 4-6 de febrero de 2016. En particular, este vídeo será proyectado el miércoles 3 de febrero en Cines Siglo XXI – Centro de Convenciones Yucatán, Mérida (México).

En el vídeo “La luz que nos envuelve” se explica la complejidad de la luz, su presencia en nuestra vida cotidiana y la razón por la que celebrar un Año Internacional de la Luz; está editado con audios en castellano, inglés y valenciano.

El vídeo está publicado tanto en el portal del Comité Internacional del Año Internacional de la Luz gestionado por la UNESCO, como en el portal del Comité Español para la celebración del Año Internacional de la Luz gestionado por la Sociedad Española de Óptica para difundir todas las actividades y materiales que vayan apareciendo en conmemoración de esta efeméride.

El International Year of Light Film Festival está financiado por el Proyecto LIGHT2015 del Programa Horizonte 2020 de la Unión Europea.

PROGRAMA DEL FESTIVAL

DESCRIPCIÓN DE LOS VÍDEOS QUE FORMAN PARTE DEL FESTIVAL

Posted in Año de la Luz-2015, Divulgación, Noticias | Tagged , , , | Leave a comment

Tema 1. Interacción magnética

Comenzamos la asignatura “Fundamentos Físicos de la ingeniería II” que se imparte en el segundo cuatrimestre del Grado en Ingeniería en Sonido e Imagen en Telecomunicación”, en la que el primer tema está dedicado al estudio de la interacción magnética.

El estudio del campo magnético se va a llevar a cabo en la asignatura desde dos puntos de vista. En primer lugar se tratan los efectos del campo magnético sobre cargas y corrientes, sin analizar las causas que producen dicho campo. A este estudio se dedica el presente tema y parte del tema siguiente. Tras una introducción al magnetismo, se presenta el concepto de campo magnético a partir de la fuerza que actúa sobre una carga en movimiento situada en su seno. Se comprueba como la fuerza magnética no realiza trabajo sobre una partícula cargada en movimiento por lo que la energía cinética de la partícula no cambia y, por tanto, el módulo del vector velocidad permanece constante. A continuación se estudia el movimiento de partículas cargadas eléctricamente en campos magnéticos, tanto si son uniformes como si no. Se trata del estudio de problemas de dinámica en los que aplicando la segunda ley de Newton se obtienen las trayectorias de las partículas cargadas sometidas a una fuerza magnética y se introduce el concepto de frecuencia ciclotrónica. El tema finaliza mostrando algunos ejemplos de movimiento de cargas en campos magnéticos, como el espectrómetro de masas, la determinación de la relación carga/masa para el electrón realizada por J. J. Thomson y el ciclotrón.

Puedes visualizar el vídeo interacción magnética: acciones entre imanes de la colección de “Experiencias de Física” de la Universidad de Alicante.

Posted in Asignatura, Temas | Tagged , , | Leave a comment

«Estoy convencido de que la Física Teórica es, realmente, filosofía»

“Estoy convencido de que la Física Teórica es, realmente, filosofía. Ha derribado conceptos básicos, por ejemplo, sobre el espacio y el tiempo (relatividad), la causalidad (teoría cuántica), sobre la sustancia y la materia (atomística) y nos ha enseñado nuevos métodos de pensamiento (complementariedad) que son aplicables mucho más allá de la Física.”

Max Born – Premio Nobel de Física en 1954

Max Born. Créditos: Wikipedia

Max Born nació el 11 de diciembre de 1882 en Breslau, entonces la capital de la provincia prusiana de Silesia y hoy la ciudad de Wroclaw en Polonia. En 1904 entró en la Universidad de Gotinga, “la meca de las matemáticas teutonas” como Born la denominaba, donde entró en contacto con tres renombrados matemáticos: Felix Klein (1849-1925), David Hilbert (1862-1943) y Hermann Minkowski (1864-1909). En Gotinga asistió fundamentalmente a las clases de Minkowski y Hilbert, del cual pasó a ser su “ayudante particular”, lo que le permitió verle y oírle a diario. Born no sólo estudió matemáticas sino también física y, en particular, asistió clases de óptica y a un curso avanzado sobre experimentos ópticos. Años después, en 1912, fue invitado por Albert Michelson a dar una conferencia sobre Relatividad en la Universidad de Chicago y Born aprovechó esta estancia para realizar experimentos de Espectroscopía con la magnífica instrumentación óptica disponible en el laboratorio de Michelson. Todo ello proporcionó a Born una base muy sólida en óptica lo que le permitió escribir el libro Optik [en alemán] en 1933 y en colaboración con Emil Wolf el libro Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light en 1959, el famoso “Born and Wolf”.

Después de doctorarse y hacer el servicio militar tuvo la oportunidad de realizar una estancia de seis meses en la Universidad de Cambridge para ampliar estudios sobre física donde asistió a las clases de Joseph Larmor y J. J. Thomson. Regresó a Alemania en 1908 descubrió la Teoría de la Relatividad Espacial de Einstein y trabajó en Gotinga de nuevo con Minkowski sobre esta teoría hasta que éste falleció en 1909. En 1915 marchó a Berlín donde ocupó una cátedra pero la Primera Guerra Mundial interrumpió su carrera científica al ser movilizado. Estuvo en el servicio de radiotelegrafía de la aviación y luego en un departamento de investigación de la artillería para trabajar en el “procedimiento fonométrico” que permitía localizar las baterías enemigas midiendo en distintos lugares el tiempo que tardaba en oírse la explosión de salida. Casualmente, el físico Lawrence Bragg también estuvo realizando los mismos estudios para el ejército británico. Max Born trabajaba con varios físicos en sus estudios fonométricos y en los ratos libres realizaban trabajos científicos, como la Teoría de Born-Haber que desarrolló junto con el químico Fritz Haber.

En 1919 intercambió con Max von Laue su plaza de Berlín por la que tenía Laue en Frankfurt, en cuya Universidad había un Instituto de Física Teórica del que Born fue nombrado director. En Frankfurt su primer ayudante fue Otto Stern, un gran físico experimental que fue el primero en demostrar experimentalmente en 1920 la ley de distribución de velocidades moleculares de Maxwell utilizando rayos moleculares de plata. En 1922 Otto Stern junto con Walther Gerlach también llevaron a cabo el famoso experimento de Stern-Gerlach, considerado como una de las demostraciones de ayudaron a sentar las bases experimentales de la mecánica cuántica. Después de dos años en Frankfurt Born regresó a Gotinga en 1921 para suceder a Peter Debye como director del Instituto de Física, tanto de la división teórica como de la experimental. Sin embargo, Born pensaba que no estaba capacitado para dirigir un centro de investigación experimental por lo que consiguió que su viejo amigo James Franck fuera contratado para dirigir la sección experimental, ocupándose Born entonces de la sección teórica. Había un tercer instituto cuyo director era Robert Pohl. No cabe la menor duda de que el  traslado de Born a Gotinga en 1921 marcó el inicio del periodo más fecundo de su vida así como el de una de las épocas de más esplendor de la Física en Alemania.

Los “peces gordos” de Gotinga en 1923. De izquierda a derecha: Max Reich, Max Born, James Franck y Robert Wichard Pohl. Créditos: Wikipedia

En su tercer periodo en la Universidad de Gotinga, Born trabajó en teoría atómica de los sólidos pero pronto su interés se centró en la teoría cuántica. Junto con Wolfang Pauli, Werner Heisenberg y Pascual Jordan iniciaron el descubrimiento de una nueva “mecánica cuántica”. De hecho, la denominación “mecánica cuántica” es debida precisamente a Born. En 1925 Heisenberg publicó un artículo en el que desarrolló la primera forma satisfactoria de la mecánica cuántica y ese mismo año, y gracias a su profunda formación como matemático, Max Born descubrió que las reglas de multiplicación de la teoría de Heisenberg escondían las del cálculo matricial y escribe por primera vez su famosa relación:

que muestra la “no-conmutación” entre la posición q y el momento p de una partícula en la Mecánica Cuántica. Junto con su discípulo Pascual Jordan estableció las leyes más sencillas de la mecánica cuántica matricial. Ese mismo año los tres, Born, Heisenberg y Jordan, desarrollaron sistemáticamente la teoría con resultados muy satisfactorios. En 1925 Born y Jordan publican sus resultados en el artículo titulado “Zur Quantenmechanik” y en 1926 Born, Heisenberg y Jordan “completaron el trabajo” en el artículo “Zur Quantenmechanik II” conocido como Drei-Männer-Arbeit (el trabajo de los “tres hombres”) en el que la mecánica matricial tomó su forma más acabada. Justo en 1926 empezaron a aparecer los trabajos de Erwin Schrödinger sobre mecánica ondulatoria. Parecían dos teorías distintas, pero pronto se demostró que eran equivalentes. Max Born es además el responsable de la interpretación probabilística de la función de onda considerada por Schrödinger. La interpretación estadística de la función de onda realizada por Max Born constituía sólo el primer paso hacia la comprensión de la relación entre partículas y ondas de la Física atómica. Aunque la mayoría de los físicos aceptó esta interpretación probabilística de la función de onda hubo algunos que no la admitieron, entre los que se encuentran físicos notables como Planck, Einstein, de Broglie y Schrödinger, pioneros de la teoría cuántica. El propio Born llegó a pensar que este rechazo a su interpretación estadística de la función de onda por parte de estos eminentes físicos era la razón por la que él no fue galardonado con el Premio Nobel de Física hasta 1954. Max Born creó en Gotinga una escuela de física teórica. Heisenberg llegó a decir que había realmente tres escuelas sobre la mecánica cuántica en aquella época: La fenomenológica de Sommerfeld en Munich, la filosófica de Bohr en Copenhague y la matemática de Born en Gotinga.

A finales de 1925 y principios de 1926 Born pronunció varias conferencias sobre Teoría de cristales y Mecánica cuántica en los Estados Unidos y en octubre de 1927 asistió al quinto Congreso Solvay, el más famoso de todos, que se celebró en Bruselas en el mes de octubre, cuyo tema principal era Electrones y fotones y donde los mejores físicos mundiales (diecisiete de los veintinueve asistentes habían sido o serían galardonados con el Premio Nobel) discutieron sobre la teoría cuántica. Max Born estaba a punto de cumplir 45 años.

En 1928 realizó un viaje agotador a Rusia para asistir a varios congresos en Leningrado y Moscú. Max Born dirigió la tesis doctoral en Gotinga a grandes físicos como Pascual Jordan, Maria Goeppert-Mayer, Robert Oppenheimer o Victor Weisskopf y entre sus asistentes en el Instituto de Física Teórica de Gottinga se encuentran Enrico Fermi, Werner Heisenberg, Pascual Jordan, Wolgang Pauli, Edward Teller o Eugene Wigner, muchos de ellos galardonados con el Premio Nobel de Física.

Tras la llegada de Hitler al poder en Alemania en enero de 1933, y debido al origen judío de Max Born, éste decidió abandonar Alemania junto con su familia en mayo de 1933. Estuvo unos años en la Universidad de Cambridge donde fue Stokes lecturer, seis meses en Bangalore, India, y finalmente desde 1936 fue Tait professor de matemática aplicada en la Universidad de Edimburgo donde estuvo hasta su retiro en 1952. Después del cual volvió a Alemania de nuevo donde en 1954 recibió la noticia de que había sido galardonado con el Premio Nobel de Física (compartido con Walther Bothe):

“Por su investigación fundamental en la mecánica cuántica, especialmente por su interpretación estadística de la función de onda”.

No fue la primera vez que fue nominado para el Premio Nobel de Física, sino que ya lo había sido en 1930, 1934, 1939 y todos los años entre 1946 y 1954, y desde luego lo tenía que haber recibido veinte años antes, en la época el que lo recibieron Heisenberg, Schrödinger y Dirac. Max Born comenzó su lección “La interpretación estadística de la Mecánica Cuántica” presentada con motivo de la recepción del Premio Nobel de Física, y además también el día de su cumpleaños, el 11 diciembre de 1954, con las siguientes palabras:

“Los trabajos por los que he sido honrado con el Premio Nobel del año 1954, no contienen el descubrimiento de ningún fenómeno natural nuevo, sino los fundamentos de una nueva forma de pensar acerca de los fenómenos naturales”.

El día anterior, 10 de diciembre de 1954, y en el discurso (banquet speech) que pronuncian los galardonados en el tradicional banquete ofrecido por los monarcas suecos en Estocolmo, Born también incluyó estas mismas palabras.

Max Born mantuvo una gran amistad con Albert Einstein, tres años mayor que Born, y durante las visitas que realizaba Born a Berlín para ver a su familia mientras servía en el frente durante la Primera Guerra Mundial, los dos físicos tocaban juntos sonatas para violín y discutían de cuestiones tanto científicas como políticas. De hecho, en 1915 Einstein discutió con Born su teoría de la relatividad general convirtiéndose Max Born en uno de sus mayores defensores. Juntos vivieron la derrota militar, la caída del imperio germano y el nacimiento de la República de Weimar. Max Born conoció personalmente a Einstein en un congreso en Salzburgo en 1909 y Max Born recuerda que en una carta fechada el 9 de noviembre de 1919 Einstein le dice “a partir de ahora nos trataremos de tú”, lo que supuso para Born un gran honor y una enorme alegría. Discutieron tanto personalmente como a través de correspondencia sobre muchos temas: ciencia, filosofía, política, …, y son famosos sus intercambios epistolares sobre la interpretación probabilística de la función de onda que Einstein, con su conocida y controvertida afirmación de que “Dios no juega a los dados”, no aceptaba. Desde que Einstein y Born abandonaron Alemania en 1933, ya no volvieron a encontrarse personalmente, pero siguieron intercambiando numerosas cartas, cada vez más centradas en temas político y sobre todo en contra de la escalada nuclear iniciada con el advenimiento de la guerra fría. En noviembre de 1954 Einstein remitió a Max Born una carta felicitándole por la reciente concesión del Premio Nobel de Física en la que le señalaba:

“Mucho me he alegrado que -aunque con notorio retraso- hayas sido galardonado con el Premio Nobel por tu aportación a la actual Mecánica cuántica. En especial tu consecuente interpretación estadística de la teoría ha clarificado de forma decisiva el pensamiento. Esto me parece absolutamente incuestionable, a pesar de nuestra infructuosa correspondencia sobre el tema”.

Tras el fallecimiento de Einstein en Princeton el 18 de abril de 1955, Max Born escribió:

“Soy consciente de lo que significa haber sido su amigo”.

Max Born se casó con Hedwig Ehrenberg en 1913 y tuvieron un hijo, Gustav, y dos hijas, Irene y Gritli. Su hija Irene se casó con un profesor de alemán natural de Gales, Brinley Newton-John, cuando la familia vivía en Gran Bretaña, aunque la pareja marchó luego a Australia, y una de las hijas del matrimonio (y por tanto nieta de Max Born) es la cantante Olivia Newton-John.

Irene Born, Olivia Newton-John y su hermana Rhona en Australia en 1963. Créditos: Robert Whitaker.

Max Born falleció en Gotinga el 5 de enero de 1970. Tenía 88 años. En su lápida aparece una inscripción con su famosa fórmula de anti-conmutación.

Lápida de Max Born en Gotinga. Créditos: Wikipedia

BIBLIOGRAFÍA

Max Born y Hedwig Born, Ciencia y conciencia en la era atómica (Alianza Editorial. Madrid, 1971).

J. M. Sánchez Ron, Historia de la Física Cuántica I. El período fundacional (1860–1926) (Crítica, Barcelona, 2001).

José Adolfo de Azcárraga, En torno a Einstein, su ciencia y su tiempo (Publicaciones de la Universidad de Valencia, 2006).

Bernardo Herradón, “Los Premios Nobel olvidados y tardíos. Max Born”, Blog-La ciencia y su impacto en la sociedad, 4 de octubre de 2010.

“Max Born”, Wikipedia (consultado el 09/12/2015).

“Max Born – Facts”. Nobelprize.org. Nobel Media AB 2014. Web. 8 Dec 2015.

“Max Born – Nobel Lecture: The Statistical Interpretations of Quantum Mechanics”. Nobelprize.org. Nobel Media AB 2014. Web. 11 Dec 2015.

.

Esta entrada participa en la LXV Edición del Carnaval de la Física, alojada en el blog High Ability Dimension.

Posted in Año de la Luz-2015, Biografías, Divulgación, Historia de la Física, Premios Nobel | Tagged , , , , , | Comments Off on «Estoy convencido de que la Física Teórica es, realmente, filosofía»

Tema 9. Corriente eléctrica

Este tema está dedicado al estudio de la corriente eléctrica, es decir, al estudio del movimiento de la carga eléctrica de una región a otra. El tema comienza con una descripción de la naturaleza de la corriente eléctrica, introduciendo los conceptos de intensidad y densidad de corriente. La intensidad de corriente es una magnitud escalar que representa la carga que fluye a través de la sección de un conductor por unidad de tiempo, mientras que la densidad de corriente es una magnitud vectorial cuyo flujo a través de una determinada superficie es precisamente la intensidad de la corriente. Un aspecto importante es la expresión que relaciona la densidad de corriente con magnitudes microscópicas de ésta como son el número de portadores de carga por unidad de volumen, la carga de cada portador y su velocidad de arrastre o desplazamiento.

Seguidamente se estudia la ley de Ohm y se introduce el concepto de resistencia y las expresiones para la resistencia equivalente de resistencias en serie y en paralelo. Utilizando la expresión del vector densidad de corriente se llega a una ecuación vectorial para la ley de Ohm que relaciona los vectores densidad de corriente y campo eléctrico aplicado mediante la conductividad o su inversa la resistividad. Es importante presentar algunos valores numéricos de la conductividad (o de la resistividad) para conductores, semiconductores y aislantes, así como señalar que mientras que la resistividad de un conductor metálico aumenta con la temperatura, la de un semiconductor disminuye cuando aquélla se incrementa.

La existencia de una corriente eléctrica a través de conductores que constituyen un circuito eléctrico implica una disipación de energía en forma de calor por efecto Joule, por lo que para mantener una corriente son necesarios otros elementos que aporten energía eléctrica al circuito. Ésta es la función de los generadores, dispositivos capaces de transformar algún tipo de energía en energía eléctrica, y que vienen caracterizados por su fuerza electromotriz.

Finalmente, se describe brevemente la utilización de los amperímetros y voltímetros como instrumentos de medida de intensidades y diferencias de potencial en diferentes montajes.

Posted in Asignatura, Temas | Tagged , | Comments Off on Tema 9. Corriente eléctrica

Tema 8. Conductores, condensadores y dieléctricos

A partir de los conceptos expuestos en el tema anterior, en éste se estudian los conductores en equilibrio electrostático. Se puede definir un conductor como un material en el que las cargas eléctricas se pueden mover libremente. Haciendo uso de la ley de Gauss se deduce que la carga y el campo eléctrico en el interior de un conductor en equilibrio electrostático son nulos de modo que si el conductor está cargado su carga debe estar en la superficie. También utilizando la ley de Gauss se obtiene el valor del campo eléctrico en puntos exteriores próximos a la superficie del conductor, expresión conocida como teorema de Coulomb, comprobándose que en la superficie del conductor el campo eléctrico es normal a la misma. También se muestra como el potencial eléctrico es constante en todos los puntos de un conductor en equilibrio electrostático y, por tanto, que su superficie es una superficie equipotencial. De especial interés resulta el estudio del comportamiento de un conductor cuando se sitúa en un campo eléctrico externo, señalando que se producirá un movimiento transitorio de cargas dentro del conductor, dando lugar a un nuevo campo que, añadido al exterior, provoca un campo eléctrico interior resultante nulo. así como la discusión de la presión electrostática sobre la superficie de un conductor cargado, el poder de las puntas (campo eléctrico más intenso cerca de los puntos del conductor de menor radio de curvatura, como en los bordes o zonas puntiagudas) o el concepto de ruptura dieléctrica, es decir, el fenómeno por el cual muchos materiales no conductores se ionizan en campos eléctricos muy altos y se convierten en conductores. La magnitud del campo eléctrico para el cual tiene lugar la ruptura dieléctrica en un material se conoce como resistencia dieléctrica. Finalmente resulta interesante estudiar algunos sistemas de conductores, sobre todo aquéllos que contienen huecos en los que hay colocados otros conductores analizando el concepto de pantalla eléctrica.

La última parte del tema se dedica al estudio de la capacidad, los condensadores y los dieléctricos. Se introduce el concepto de capacidad y se lleva a cabo un análisis de las propiedades eléctricas de la materia desde los puntos de vista microscópico y macroscópico. Se estudia la capacidad de un condensador, dispositivo útil para almacenar carga y energía, formado por dos conductores muy próximos, pero aislados el uno del otro, que conectados a una diferencia de potencial, tal como una batería, adquieren cargas iguales y opuestas. Se estudian distintos tipos de condensadores como el de láminas planoparalelas, el cilíndrico y el esférico. Se analiza el almacenamiento de energía que se produce durante la carga de un condensador y se introduce el concepto de densidad de energía de un campo electrostático. La energía almacenada en un campo eléctrico es igual a la que se necesita para establecer el campo. Otras cuestiones a estudiar son la asociación de condensadores y las variaciones en la capacidad, el campo, el potencial y la carga eléctrica de un condensador cuando se introduce entre sus láminas un material dieléctrico, dependiendo si el condensador está aislado o no. Es importante hacer mención de que la función del dieléctrico situado entre las placas de un condensador no es sólo la de aumentar su capacidad, sino que también proporciona un medio mecánico para separar los dos conductores, que deben estar muy próximos y aumenta la resistencia a la ruptura dieléctrica en el condensador debido a que la resistencia dieléctrica de un dieléctrico es generalmente mayor que la del aire. Finalmente se estudian los dieléctricos desde un punto de vista microscópico. Los dieléctricos se distinguen de los conductores porque no tienen cargas libres que se puedan mover a través del material, al ser sometidos a un campo eléctrico. Se habla de los dieléctricos apolares y polares y su comportamiento en un campo eléctrico externo el cual, en última instancia, orienta en la dirección del campo eléctrico las moléculas que poseen un momento dipolar permanente o aquéllas en las que se ha inducido un momento dipolar, pues en un dieléctrico polarizado cada molécula se comporta como un dipolo eléctrico. Estas moléculas están sometidas a un par que tienen a alinearlas con el campo, pero las colisiones debidas a la agitación térmica de las moléculas tienden a impedir este alineamiento.

Posted in Asignatura, Temas | Tagged , | Comments Off on Tema 8. Conductores, condensadores y dieléctricos

Einstein 1905: De los “cuantos de energía” a los “cuantos de luz”

“La energía de un haz de luz que se propaga desde una fuente puntual no se distribuye de forma continua en un espacio creciente [la teoría ondulatoria de la luz], sino que consiste en un número finito de cuantos de energía localizados en los puntos del espacio, que se mueven sin dividirse y que sólo se pueden producir y absorber como unidades completas”.

Con estas palabras Albert Einstein (1879-1955) presentaba sus ideas “heurísticas” en su artículo “Sobre un punto de vista heurístico relativo a la producción y transformación de la luz” (“Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt”) publicado en 1905, su Annus Mirabilis, año que el propio Einstein calificó como “muy revolucionario”. Einstein introdujo el concepto de “cuanto de luz”, un paquete indivisible, aunque no fue hasta 1926 cuando el término “fotón” sustituyera al “cuanto de luz” de Einstein para siempre. El término “fotón” fue utilizado por Gilbert Lewis (1875-1946) en un artículo publicado en Nature el 18 de diciembre de 1926, aunque ya había sido usado con anterioridad por los físicos Leonard T. Troland (1889-1932) en 1916 y John Joly (1857-1933) en 1921, pero en ninguno de los tres casos como sinónimo del “cuanto de luz” de Einstein.

Este año 2015 conmemoramos el centenario de la publicación de los trabajos de Einstein sobre la relatividad general y -como se señala en uno de los puntos de la resolución de la ONU declarando 2015 como Año Internacional de la Luz– “la incorporación de la luz en la cosmología mediante la relatividad general”. Sin embargo, tal vez no es tan conocido que Einstein también realizó varias contribuciones seminales a la ciencia de la luz. No sólo introdujo en 1905 el concepto de “cuanto de luz” y lo aplicó para estudiar teóricamente “la emisión y transformación de la luz”, como se ha mencionado antes, sino que también postuló la emisión estimulada en 1916, que a la postre se convirtió en la base de funcionamiento del láser. Además de estas dos contribuciones, Einstein también fue uno de los pioneros que exploraron la dualidad onda-partícula de la luz en un artículo publicado en 1909. No cabe la menor duda: Einstein nos dejó un gran legado para la ciencia de luz.

Albert Einstein en 1905. Créditos: Wikipedia

De todos los grandes logros científicos realizados por Einstein –declarado por la revista Time como el “personaje del siglo XX”, el genio entre los genios-, he elegido como tema de esta contribución uno, no por ser más importante que los demás sino por tres razones fundamentales. La primera, porque introduce la idea de “cuanto de luz” (más tarde rebautizado con el nombre de “fotón”) de manera convincente. La segunda, porque fue Einstein quien aplicó las ideas de Planck, antes que ninguno de sus colegas, para explicarlo teóricamente en 1905. Y la tercera, porque la resolución de las Naciones Unidas en la que 2015 fue declarado como el Año Internacional de la Luz se refiere a este importante hito en la historia de la ciencia de la luz. El lector habrá adivinado que me estamos refiriendo al efecto fotoeléctrico.

El efecto fotoeléctrico fue descubierto por Heinrich Hertz (1857-1894) mientras estaba llevando a cabo sus investigación sobre la generación de ondas electromagnéticas. Observó que muchos metales emiten electrones cuando incide luz sobre la superficie del metal. Estos electrones se conocen como “fotoelectrones”. No penséis que este efecto es algo que sólo se puede encontrar en los laboratorios de investigación. Como Doris Kimbrough nos recuerda:

“El efecto fotoeléctrico se utiliza en muchos dispositivos modernos, como en las puertas automáticas de los supermercados, los detectores de movimiento o las gafas de visión nocturna, y además sus aplicaciones se extienden desde las calculadoras solares y nuestra amiga la televisión”.

En 1902 el físico Phillip Lenard (1862-1947) demostró que si la longitud de onda de la radiación incidente sobre la superficie del metal es suficientemente corta, entonces se produce la emisión electrones (la luz ultravioleta facilita el proceso). Con los primeros trabajos quedaron establecidas de forma empírica las leyes fundamentales del efecto fotoeléctrico:

  1. El número de electrones emitidos es proporcional a la intensidad de la radiación incidente.
  2. Para cada metal existe una frecuencia umbral de la radiación incidente f0 (su “color”) por debajo de la cual no se emiten no se emiten electrones.
  3. La energía cinética máxima de los electrones emitidos es proporcional a (ff0) e independiente de la intensidad de la radiación incidente.
  4. La emisión de electrones es prácticamente instantánea, es decir, aparece y desaparece con la radiación electromagnética sin retraso medible.

Las leyes 2) y 3) son irreconciliables con la teoría electromagnética de la luz de Maxwell (otro de los hitos que conmemorados en este Año Internacional de la Luz) y la 4) nunca se ha observado. Si la luz incidente sobre el metal es suficientemente débil, según la teoría de Maxwell, debería existir un tiempo de retraso mensurable entre el instante en que la luz empieza a incidir sobre la superficie y la expulsión del fotoelectrón. Sin embargo, este retraso nunca se ha detectado.

Max Planck (1858-1947) fue el primero que en 1900 fue capaz de dar correctamente una interpretación teórica sobre la radiación electromagnética emitida por un cuerpo negro en equilibrio térmico a una determinada temperatura. Haciendo uso de argumentos termodinámicos y una hipótesis ad hoc encontró una fórmula que se ajustaba bastante bien a los datos experimentales. Tras seis años trabajando en este tema, y en un “acto de desesperación” (como Planck definió a su hipótesis ad hoc), consideró que la energía total de los resonadores del cuerpo negro se compone de pequeños “elementos” indivisibles, cada uno de magnitud E, y asumió que la energía E de cada uno de estos “elementos” era proporcional a la frecuencia f con la que los resonadores vibran, E = hf, siendo h la constante de proporcionalidad (conocida como constante de Planck). Acababa de nacer la primera discontinuidad cuántica. Sin embargo, Planck fue bastante cauto en el uso de su concepto cuántico porque era de naturaleza conservadora. Para él, después de la radiación, la energía electromagnética se propagaba en el espacio en forma de ondas electromagnéticas.

El 17 de marzo de 1905, tres días después de su vigésimo sexto cumpleaños, un joven Einstein envió un artículo desde de la ciudad de Berna a Annalen der Physik, la revista líder de la física alemana, titulado “Sobre un punto de vista heurístico relativo a la producción y transformación de la luz”. En este trabajo, Einstein presenta un “punto de vista heurístico” sobre que los cuantos de energía de Planck son reales y pueden encontrarse en algunos experimentos como constituyentes de la luz y otro tipo de radiaciones. Era el nacimiento de la segunda discontinuidad cuántica y de los “cuantos de luz”. Einstein realizó algunos de sus más grandes logros científicos entre 1902 y 1909, cuando ese gigante desconocido ocupaba un puesto humilde como “funcionario técnico” en la Oficina Federal de Patentes de Berna. Este trabajo como oficial de patentes le dejaba el suficiente tiempo libre para desarrollar, uno tras otro, trabajos científicos extraordinarios. De hecho, el propio Einstein calificó a estos años en Berna no sólo como los más felices, sino también como el período más fructífero en su vida. Einstein había sido uno de los primeros en sentirse atraídos por la teoría cuántica de Planck, probablemente unos de los pocos que por aquel entonces había vislumbrado su aplicabilidad a otros fenómenos fisicos. De hecho, hacia 1905 las ideas de Planck eran bastante ignoradas. Señalemos, por ejemplo, que en 1911, en la primera Conferencia Solvay Einstein mismo declaró:

“Insisto en el carácter provisional de este concepto [cuanto de luz]”

o que no se aplicaron a la descripción del átomo hasta que Niels Bohr lo hiciera en 1913 y de ello no cabe duda que fue responsable el trabajo de Einstein de 1905 sobre los “cuantos de luz”.

Primera conferencia Solvay (1911). Créditos: Wikipedia

En su artículo de 1905, Einstein utilizó su “hipótesis del cuanto de luz” para explicar el efecto fotoeléctrico, que analiza en una breve sección del artículo que titula “Sobre la generación de rayos catódicos por iluminación de cuerpos sólidos”. Para explicar el efecto fotoeléctrico Einstein considera que luz consiste de cuantos de energía, cada uno de magnitud hf, y que los cuantos penetran en la capa superficial del metal. Un cuanto de luz transfiere su energía a un único electrón y parte de esta energía se transforma en energía cinética del electrón y la otra parte, W, se utiliza para arrancarlo de metal (W es la energía que el electrón pierde al salir el metal). W es función de cada material y se conoce como “función trabajo”. Teniendo esto en cuenta, la energía cinética máxima de un electrón eyectado viene dada por la ecuación hfW. Cien años después de que Thomas Young demostrara tan brillantemente la naturaleza ondulatoria de la luz mediante su célebre experimento de la doble rendija, Einstein tenía la osadía de presentar ante la comunidad científica lo que parecía una vuelta a las ideas una vez propuestas por Newton sobre que la luz se compone de un chorro de partículas. La respuesta inmediata de la comunidad científica a su nuevo concepto de “cuantos de luz” no parecía ser muy acogedora:

“¿Partículas de luz? ¡Es una idea terrible!”.

El propio Planck fue uno de los que más criticaron esta idea de “cuantos de luz”, y Robert Millikan (1868-1953) tachó a la idea de Einstein de imprudente.

De izquierda a derecha: Einstein, Planck y Millikan en 1931. Créditos: Wikipedia.

Finalmente, en 1916 y después de diez años de experimentos, fue el propio Millikan quién no sólo validaría la ecuación de Einstein del efecto fotoeléctrico sino que también determinaría “fotoeléctricamente” la constante de Planck h y además con gran precisión. El artículo de Millikan de 1916 finaliza con una conclusión que no deja lugar a dudas:

“La ecuación de Einstein del efecto fotoeléctrico ha sido sometida a muchas pruebas experimentales y en todos los casos predice con exactitud los resultados observados”.

Sin embargo, inicialmente los que pretendía Millikan con sus experimentos era demostrar que las ideas de Einstein sobre los “cuantos de luz” eran erróneas. En un artículo publicado en 1949 en la revista Reviews of Modern Physics para celebrar el septuagésimo cumpleaños de Einstein, Millikan escribió:

“Pasé diez años de mi vida sometiendo a la ecuación de Einstein de 1905 [la del efecto fotoeléctrico] a diferentes pruebas, y contrariamente a todas mis expectativas me vi obligado en 1915 a proclamar su indudable verificación experimental, a pesar de lo irrazonable que era, pues parecía violar todo lo que sabíamos acerca de la interferencia de la luz”.

Pero al final la historia sobre el efecto fotoeléctrico tuvo un final feliz, tanto para Einstein como para Millikan. Ambos fueron galardonados con el Premio Nobel de Física, Albert Einstein en 1921 “por sus servicios a la física teórica, y en especial por su descubrimiento de la ley del efecto fotoeléctrico, y Robert Millikan en 1923 “por su trabajo sobre la carga elemental de electricidad y sobre el efecto fotoeléctrico. A esto hay que añadir que en 1905 Phillip Lenard también recibió el Premio Nobel de Física “por su trabajo sobre los rayos catódicos” y parte de “su trabajo” incluía sus investigaciones sobre el efecto fotoeléctrico. Sin duda, nadie hubiera pensado jamás que algo como el efecto fotoeléctrico habría proporcionado tantos Premios Nobel.

BIBLIOGRAFÍA:

  1. A. Einstein, “On a Heuristic Point of View about the Creation and Conversion of Light,” Annalen der Physik 17, 132–148 (1905).
  2. A. Einstein, “On the Present Status of the Radiation Problem,” Physikalische Zeitschrift 10, 185–193 (1909).
  3. A. Einstein, “Emission and Absorption of Radiation in Quantum Theory,” Verhandlungen der Deutschen Physikalischen Gesellschaft 18, 318–323 (1916).
  4. A. B. Arons y M. B. Peppard, “Einstein’s Proposal of the Photon Concept – a Translation of the Annalen der Physik Paper of 1905,” American Journal of Physics 33, 367–374 (1965).
  5. B. R. Masters, “Albert Einstein and the Nature of Light,” Optics and Photonics News 23 (7), 42-47 (2012).
  6. D. R. Kimbrough, “Einstein’s Miraculous Year,” ChemMatters, December, 4–6 (2005).
  7. R. Millikan, “A Direct Photoelectric Determination of Planck’s h,” Physical Review 7, 355–388 (1916).
  8. R. Millikan, “Albert Einstein on His Seventieth Birthday,” Reviews of Modern Physics 21, 343–345 (1949).
  9. A. Azcárraga, En torno a Einstein, su ciencia y su tiempo (Publicaciones de la Universidad de Valencia, 2007).
  10. H. Cooper, Great Physicists: The Life and Times of Leading Physicists from Galileo to Hawking (Oxford University Press, Oxford, 2001).
  11. A. Galindo y P. Pascual, Mecánica Cuántica (Eudema Universidad, Madrid, 1989).
  12. J. M. Sánchez Ron, Historia de la Física Cuántica I. El período fundacional (1860–1926) (Crítica, Barcelona, 2001).
  13. C. Olalla, Planck: La fuerza del deber (Nivola Libros y Ediciones, Madrid, 2006).
  14. F. R. Villatoro, “La historia del término fotón”, Naukas-La Ciencia de la Mula Francis.

Versión en español de de la entrada publicada en el blog del Año Internacional de la luz – IYL2015:

Einstein 1905: From “Energy quanta” to “Light quanta”

.

Esta entrada participa en la LXV Edición del Carnaval de la Física, alojada en el blog High Ability Dimension.

Posted in Año de la Luz-2015, Divulgación, Historia de la Física, Premios Nobel | Tagged , , , , | Comments Off on Einstein 1905: De los “cuantos de energía” a los “cuantos de luz”

La Geometría lo es todo

La Teoría de la Relatividad General de Albert Einstein cumple cien años

Desde su fundación en 1700, la Academia Prusiana de las Ciencias ha tenido su sede en Berlín y ha sido siempre un foro de debate sobre ideas científicas y novedosas, junto a problemas sin resolver. Convocaba unos premios para estimular las soluciones a esos problemas y cada dos años otorga la prestigiosa Medalla Helmholtz para premiar toda una trayectoria científica. Entre los miembros destacados de esta institución cabe señalar a Euler, Mostesquieu. Diderot, Kant, Planck, Helmholtz y Einstein, entre otros.

El 25 de noviembre de 1915, en plena Primera Guerra Mundial y mientras Europa se desangraba por los cuatro costados en una auténtica guerra de desgaste, Albert Einstein presentó ante la Academia Prusiana un artículo que servía como fundamento a su Teoría de la Relatividad General, en el que aparecían sus ecuaciones de campo gravitatorio y en el que modificaba la hasta entonces aceptada teoría gravitatoria del mismísimo Isaac Newton. Desde los trabajos de Newton la interacción entre dos masas se había descrito mediante una fuerza de atracción entre ambas, un campo gravitatorio que permea completamente el espacio tridimensional en el que las dos masas se encuentran.

Einstein propuso que la interacción gravitatoria se pone de manifiesto de una manera diferente, de una forma puramente geométrica, mediante la modificación de la propia esencia y forma del espacio-tiempo. Es decir, es el propio espacio cuatridimensional el que debido al campo gravitatorio sufre un cambio en sus propiedades intrínsecas y varía su geometría (que deja de ser euclídea), pasa de ser plano a tener deformaciones a causa de la presencia de materia, valles por los cuales las partículas se ven obligadas a transitar. Las partículas masivas sufren la interacción por la deformación del espacio-tiempo.

LEE EL ARTÍCULO COMPLETO DE AUGUSTO BELÉNDEZ Y ENRIQUE ARRIBAS EN LA WEB DE ABC-EDICIÓN DIGITAL

Albert Einstein en 1921 / Créditos: Wikipedia

Posted in Año de la Luz-2015, Divulgación, Historia de la Física, Premios Nobel | Tagged , , , | Comments Off on La Geometría lo es todo