Tema 7. Ondas electromagnéticas

Las leyes de Farady-Henry y de Ampère-Maxwell indican la posibilidad de transmitir una señal de un lugar a otro mediante un campo electromagnético dependiente del tiempo. A finales del siglo XIX Hertz (1857-1894) demostró experimentalmente que un campo magnético variable con el tiempo se propaga en el vacío con una velocidad igual a la de la luz. Antes de que Hertz realizará sus experimentos Maxwell ya había predicho teóricamente la existencia de las ondas electromagnéticas. La importancia técnica de las ondas electromagnéticas sobre todo en el campo de las telecomunicaciones es de todos conocida. Se repasan inicialmente las ecuaciones de Maxwell y se estudian las ondas electromagnéticas planas. Las ecuaciones de Maxwell para el campo electromagnético en el vacío (es decir, en una región sin cargas libres ni corrientes) admiten como solución especial un campo eléctrico y uno magnético perpendiculares entre sí y que se propagan en una dirección perpendicular a ambos. A continuación se estudia del vector de Poynting, la densidad de energía, la intensidad y la presión de radiación de las ondas electromagnéticas planas. Tras discutir el fenómeno de la dispersión de ondas electromagnéticas se presenta el espectro de la radiación electromagnética indicando algunas de sus aplicaciones.

Posted in Asignatura, Temas | Tagged , , | Leave a comment

La Física es un placer (2)

En la entrada anterior se comentaron diversos aspectos de una canción de Nacha Pop escrita por Antonio Vega (1957-2009) y titulada “La Física es un placer”. Ya se señaló entonces que a Antonio Vega parecía que le gustaban la Física y las Matemáticas, pero lo cierto es que realmente Antonio Vega era un apasionado de la Física y, de hecho, estudió varios años de Ciencias Físicas y Arquitectura en la Universidad. Como puede leerse en su página web (http://www.anotoniovega.org) en varias entrevistas habló de Física y su relación con la Física. Aquí se incluyen algunas de ellas:

“Da la sensación de que hay mucho tiempo por delante para hacer cosas. Física, astronomía y campos magnéticos; a veces se pelean. Estamos rodeados de leyes físicas que determinan nuestras vidas sin darnos cuenta. Nuestro planeta no es sólo la pelota que pisamos, pertenecemos a algo mucho más grande. Merece la pena tomar conciencia de todo ello, levantarte por la mañana y decir; no soy español, sino ciudadano del mundo, sé lo que hay más allá y me considero parte de ello”.

“Me siento más como un apasionado de las ciencias que escribe. Me gusta mucho la lectura de gente que maneja estos términos: Umberto Eco, Asimov, Arthur Clarke. Todo lo que escribo tiene matices científicos, bien como recurso poético, bien como una referencia cosmogónica directo”.

La música es física pura, son unos valores frecuenciales, unas magnitudes hertzianas, que se combinan en un tiempo subdividido. Podrías llegar a construir una determinada armonía con sólo números”.

La física cambió mi vida. Cambié mi postura ante el mundo cuando comprendí a Einstein. Cuando supe que el camino más corto entre dos puntos no es la línea recta. Cuando empecé a imaginarme cosas como qué pasaría si me montase a caballo en un haz de luz”.

“Si no hubiera existido Nacha Pop, yo habría sido un licenciado en Ciencias Físicas y en Arquitectura. Es más, la Física me vuelve loco y me gustaría ser profesor”.

Posted in Divulgación | Tagged , | Leave a comment

La Física es un placer (1)

Seguramente al leer el título de esta entrada os habréis preguntado “¿de qué va esto?”. La respuesta es que “va de canciones y física”. Supongo que habéis oído hablar del grupo musical de los ochenta Nacha Pop y de uno de sus componentes, Antonio Vega (1957-2009), autor de la conocida canción La chica de ayer. Otra de las canciones de este grupo, compuesta también por Antonio Vega, lleva por título Una décima de segundo (1984), y en ella aparecen las frases “es que no hay nada mejor que imaginar … la física es un placer”, aunque también se hace mención a otras palabras “científicas” como ángulos, coordenadas, girar, eje, rodando, trayectoria, formular, incógnitas, despejar, solución, fórmula, círculos, tiempo, paralelas, espacio y tiempo, etc. Desde luego, escuchando esta canción parece que a Antonio Vega le gustaban la física y las matemáticas. Podéis escucharla seleccionando la imagen.

Posted in Divulgación | Tagged , | 7 Comments

Tema 6. Movimiento ondulatorio

El estudio del movimiento oscilatorio sirve de punto de partida para abordar el estudio de las ondas en este tema. El movimiento ondulatorio aparece en casi todas las ramas de la Física y a nosotros nos servirá para posteriormente estudiar los temas dedicados a las ondas electromagnéticas, las ondas luminosas, la interferencia y la difracción. Todos estamos familiarizados con las ondas en el agua y también ondas sonoras, lo mismo que ondas de luz, ondas de radio y otras ondas electromagnéticas. La dificultad inherente al concepto de onda hace que, para introducirlas, sea preciso utilizar ondas tangibles como las de la superficie de un líquido, las de un muelle o las de una cuerda tensa, es decir, ondas mecánicas, a pesar de que las ondas que estudiaremos en esta asignatura no son ondas mecánicas (como sucede en la asignatura Acústica, también de primer curso), sino ondas electromagnéticas. Se comienza mostrando qué es una onda y dejando claro que una onda transporta momento lineal y energía, pero no materia, y se distingue entre ondas longitudinales y transversales. Analizando la propagación de una perturbación en una dirección, considerando que no se deforma y que su velocidad de propagación es constante, se obtiene la forma general de la función de onda que corresponde a una onda viajera así como la ecuación de onda, cuya solución es precisamente la función de onda. En esta ecuación diferencial aparece la velocidad de propagación de la onda y, de hecho, del análisis de esta ecuación diferencial para cada caso es posible identificar la velocidad de propagación. También se estudia el caso particular de ondas armónicas así como las ondas en dos y tres dimensiones, y se analizan también cuestiones relativas a la intensidad y la absorción de energía por el medio y se finaliza con un análisis de la velocidad de fase y la velocidad de grupo.

Posted in Asignatura, Temas | Tagged , | Leave a comment

Física y Ciencias Experimentales

La Física ha proporcionado una base conceptual y una estructura teórica sobre la cual se han fundado otras ciencias experimentales y porque desde el punto de vista práctico, ha proporcionado técnicas que pueden utilizarse casi en cualquier área de investigación pura y aplicada. Por ello, es difícil encontrar una ciencia que no utilice técnicas físicas en su desarrollo. Como soy físico de formación (y de profesión), y por ello se me puede decir que parte demasiado interesada, que no soy un observador imparcial, pero puedo afirmar sin riesgo a equivocarme que la Física es posiblemente una de las ciencias más básicas y más fundamentales de todas las que existen, pues es la base de otros muchos campos científicos. Es difícil encontrar una actividad de investigación que no utilice conceptos, teorías y técnicas físicas en su desarrollo, incluyendo campos aparentemente tan alejados como la Arqueología, la Paleontología, la Música, etc. Esto da a la Física el carácter de ciencia fundamental.

Posted in Asignatura, Divulgación | Tagged , | Comments Off on Física y Ciencias Experimentales

Tema 5. Movimiento oscilatorio

En este tema se estudia uno de los sistemas físicos que se presentan en multitud de ocasiones –el oscilador armónico simple–, tanto en la teoría como en la práctica. Empezamos hablando de los movimientos periódicos y vibratorios en general para pasar a continuación al estudio del movimiento armónico simple (MAS). Éste es el más importante de todos los movimientos oscilatorios, además de ser el movimiento oscilatorio más sencillo de describir matemáticamente. También constituye una aproximación muy buena de muchas oscilaciones que se presentan en la naturaleza. En primer lugar se estudia la cinemática del MAS, analizando la ecuación que proporciona la posición de una partícula que describe un MAS en función del tiempo. Se determina la velocidad y la aceleración en función del tiempo, y se relaciona el MAS con el movimiento circular uniforme. A continuación se analiza la dinámica del MAS y se obtiene la fuerza que da lugar a este tipo de movimiento, que se conoce como fuerza recuperadora elástica y que satisface la ley de Hooke. También se obtiene la ecuación diferencial que gobierna el MAS. Un aspecto importante a resaltar en este punto es que cualquier magnitud física, aunque no sea una posición, cuyo comportamiento en función del tiempo venga gobernado por una ecuación diferencial de este tipo variará como lo hace un MAS. Analizada la cinemática y la dinámica el paso siguiente es estudiar los aspectos energéticos relacionados con este tipo de movimiento. Se calculan las energías cinética y potencial y se comprueba como la fuerza recuperadora elástica es conservativa y, por tanto, la energía mecánica de un oscilador armónico simple es constante. Se estudian diversos ejemplos físicos concretos de este movimiento como son la masa unida a un resorte elástico o el péndulo simple para pequeñas oscilaciones. Como en muchos fenómenos físicos interviene la aplicación simultánea de dos o más vibraciones armónicas sobre el mismo sistema, a continuación se consideran algunos casos específicos de la composición de movimientos armónicos simples, tomando como punto de partida el principio de superposición: la resultante de dos o más vibraciones armónicas es simplemente la suma de las vibraciones aisladas. Este estudio también tiene interés para el posterior análisis de la superposición de ondas. Tras analizar la superposición de movimientos armónicos simples se analizan las oscilaciones amortiguadas y forzadas y se introduce el fenómeno de la resonancia que aparece en tantas ramas de la Física.

Posted in Asignatura, Temas | Tagged , | Comments Off on Tema 5. Movimiento oscilatorio

Tema 3. Inducción electromagnética

En los temas 1 y 2 se han estudiado los campos magnéticos producidos por corrientes estacionarias (campos magnéticos independientes del tiempo), mientras que este tema se dedica al estudio de la inducción electromagnética y los campos magnéticos dependientes del tiempo y los campos eléctricos no conservativos que se producen. Los fenómenos de inducción electromagnética juegan un papel clave, por ejemplo, en la tecnología eléctrica. El tema comienza con la presentación de diversos fenómenos experimentales que ponen de manifiesto la existencia de una corriente eléctrica asociada a la variación de flujo magnético que atraviesa un circuito, tanto si se mueve el circuito o la fuente del campo magnético, se deforma el circuito o se aplica un campo magnético variable con el tiempo. Además, en todos los casos, el sentido de la corriente es tal que tiende a oponerse a la causa que la produce (ley de Lenz). En este punto es importante hacer ver a los alumnos que si aparece una corriente eléctrica inducida en los circuitos debe existir una fuerza electromotriz, denominada inducida, y que puede obtenerse cuantitativamente a partir de la ley de Faraday-Henry. Cierto interés tiene el estudio de la fuerza electromotriz inducida por el movimiento relativo de un segmento de corriente en un campo magnético. En este caso la fuerza electromotriz inducida es una consecuencia directa de la fuerza magnética. También se estudian las corrientes de Foucault que aparecen en un trozo de metal que se mueve en un campo magnético o que está situado, en reposo, en el seno de un campo magnético variable con el tiempo. Estas corrientes normalmente son perjudiciales debido a que el calor producido no solamente constituye una pérdida de potencia sino que hay que disiparlo. La mayor parte de la energía eléctrica utilizada actualmente se produce mediante generadores eléctricos los cuales están basados en el fenómeno de la inducción electromagnética. Se describe brevemente el funcionamiento de los generadores, en los que se genera una corriente eléctrica haciendo girar una espira en un campo magnético.

Cuando dos circuitos están próximos uno al otro, el flujo magnético que atraviesa uno de ellos depende de la corriente que circula por el circuito próximo. Este fenómeno permite introducir el concepto de inducción mutua e introducir el coeficiente de inducción mutua. El mismo procedimiento se puede emplear para relacionar el flujo magnético y la corriente para un único circuito, en cuyo caso aparece el concepto de autoinducción y se introduce el coeficiente de autoinducción del circuito y la fuerza electromotriz autoinducida. El coeficiente de autoinducción se puede calcular a partir del cociente del flujo y la corriente, lo que se puede aplicar fácilmente al caso de un solenoide. Como ejemplo de inducción mutua se estudia el transformador, dispositivo utilizado para variar las tensiones y corrientes sin pérdida apreciable de potencia. También se analizan los circuitos RL formados por resistencias y autoinducciones, introduciéndose la constante de tiempo de los mismos. También se lleva a cabo el estudio de la energía almacenada en un campo magnético y la densidad de energía magnética, partiendo del estudio de un circuito RL analizando la energía que se almacena en la autoinducción cuando se establece una corriente eléctrica en el circuito. Esta energía magnética es igual a la que se necesita para establecer el campo.

Puedes visualizar un vídeo en el que se recrean diversos experimentos de inducción electromagnética de la colección de “Experiencias de Física” de la Universidad de Alicante.

Posted in Asignatura, Temas | Tagged , | Comments Off on Tema 3. Inducción electromagnética