Estadística + Ingeniería Multimedia

Blog sobre la asignatura Estadística de Ingeniería Multimedia

Estadística + Ingeniería Multimedia - Blog sobre la asignatura  Estadística de Ingeniería Multimedia

Una aplicación para el cálculo de probabilidades para distribuciones discretas y continuas.

Ahora no tienes excusa. Con la siguientes applets de estadística es bastante fácil entender el cálculo de probabilidades en distribuciones discretas: Poisson, Binomial, …, y distribuciones continuas: Normal, Chi-cuadrado, F, t de Student, … Estas applets han sido realizadas por Matt Bognar, profesor de la Universidad de Iowa. Se puede acceder a ellas desde la web, a través de su página personal. Pero además incluye la aplicación para IOS (iOS 7.1 o superior) y la aplicación  para Android para que podáis trabajar con más comodidad desde el móvil o tableta. Aquí os muestro un ejemplo para el caso de la Binomial:

binombognar

Calculadora de análisis combinatorio

En el tema 4 usamos el análisis combinatorio para resolver  ejercicios algo más complejos sobre  probabilidades. Así que os dejo aquí esta sencilla calculadora  combinatoria on-line que os puede ser de utilidad.

calculadoracombinatoria

Puedes practicar con ella resolviendo estos sencillos ejercicios antes de pasar a problemas más complicados.

  • ¿Cuántas cadenas de 8 bits se pueden formar? (Sol.: 256)
  • Un alfabeto consta de 5 vocales y 21 consonantes ¿Cuántas claves de 5 letras distintas de dicho alfabeto pueden formarse? (Sol.: 7893600)
  • ¿Cuántas números de cuatro cifras se pueden formar? (Sol: 9000)
  • ¿Cuántos números de cuatro cifras distintas se pueden formar? (Sol.:4536)
  • ¿Cuántos números de cuatro cifras distintas se pueden formar, si el último debe ser cero? (Sol.: 504)
  • ¿Cuántas muestras aleatorias simples de tamaño 10 pueden extraerse de una población de tamaño 50? (Sol.: 10272278170)
  • ¿Cuántas cadenas de 12 bits tienen 8 unos y 4 ceros? (Sol: 495)
  • Una tienda de informática tiene 7 marcas diferentes de ordenadores. Calcula el número de formas posibles de seleccionar 10 ordenadores atendiendo sólo a la marca. (Sol.: 8008)
  • ¿Cuántas palabras con o sin sentido pueden formarse con todas las letras de la palabra MULTIMEDIA? (Sol.: 907200)

Intervalos de confianza para una proporción (comprueba tus resultados)

Aquí os incluyo una sencilla calculadora realizada con Excel Web App que os permitirá comprobar vuestros  resultados en los ejercicios sobre intervalos de confianza para una proporción. Es una versión simplificada de mi hoja de cálculo ya que Excel Web App no tiene ciertas funcionalidades como la validación de datos y la protección de algunas celdas … Si trabajas con ella y quieres volver a tener la hoja como al principio sólo tienes que recargar la página. Por defecto aparece la solución de los intervalos de confianza  correspondientes a los ejercicios 6.8 y 6.6 (en ese orden) propuestos en la práctica del curso 2012-2013 sobre el  tema 6. Accede a ella pinchando en la imagen o en el siguiente enlace:

Intervalos de confianza para una proporción

Os dejo aquí también los enunciados de dichos ejercicios y la solución final:

Ejercicio 6.6 Un centro de investigación ha diseñado un programa de fisioterapia con la Wii, para que los pacientes de rehabilitación puedan hacer los ejercicios en casa.  El centro desea saber si con el uso de dicho programa el tiempo de recuperación es menor. Para ello utilizaron el programa sobre 2350 pacientes y se obtuvo que 650 pacientes necesitaron más de dos semanas de rehabilitación. Los datos estimados hasta el momento sobre este tipo de rehabilitaciones indicaban que en el 40 por ciento de los casos la rehabilitación era superior a dos semanas. Calculando un intervalo de confianza al 95 por ciento explica si  los datos obtenidos con el uso de la Wii mejoran  los datos estimados previamente.

Solución: Sea p=proporción de gente que necesita más de dos semanas de rehabilitación con la Wii.

Aplicando la fórmula para muestras grandes se obtiene:

Ip95%=[0.2585, 0.2947]

Con una confianza del 95% podemos decir que los datos obtenidos con la Wii mejoran los datos estimados previamente ya que los datos estimados previamente indicaban que el 40% necesitaban más de 2 semanas de rehabilitación mientras que con la Wii el porcentaje de gente que necesitaría más  de dos semanas para la rehabilitación estaría entre el 25.85% y el 29.47%, mucho inferior al 40%.

Ejercicio 6.8 Una empresa de desarrollo de videojuegos desea conocer  la aceptación que está teniendo un videojuego que acaba de lanzar al mercado. Se ofrece a un grupo de 20 personas elegidas aleatoriamente que jueguen con él durante un mes y se les pide que indiquen si les ha gustado. A 15 de dichas personas les ha gustado y al resto no. Obtén un intervalo de confianza al 96.8 por ciento para el porcentaje de gente que le ha gustado el videojuego. A la vista de los resultados qué conclusiones se pueden sacar. ¿Le harías alguna recomendación a la empresa sobre la forma de hacer este estudio?

Solución: Sea p=proporción de gente que le gusta el videojuego y P=porcentaje de gente que le gusta el videojuego.

Entonces aplicando la fórmula para muestras pequeñas se obtiene Ip96.8%=[0.125,1] y por tanto IP96.8%=[12,5%,100%].

Recomendación para la empresa: Este intervalo es muy pobre (con una confianza del 96.8% sabemos que el porcentaje de gente a la que le gusta el videojuego está  entre 12.5% y 100%) y no da información relevante a la empresa, así que habría que utilizar una muestra grande y aplicar la fórmula correspondiente.

Una aplicación on-line sobre probabilidad total

Con el fin de ayudar a entender cómo aplicar el teorema de la probabilidad total, os dejo una de las aplicaciones on-line  realizadas  en la asignatura de Ingeniería Multimedia. Forma parte del  trabajo realizado el curso pasado en la asignatura por Fernando Meneses (estudiante de  Ingeniería Multimedia). Pincha en la imagen de la entrada o en el siguiente  enlace  si quieres acceder a ella:

Aplicación sobre el teorema de la probabilidad total

 

Una aplicación on-line sobre muestreo sistemático

Con el fin de ayudar a entender los pasos de los problemas propuestos sobre muestreos sistemáticos, os dejo una aplicación on-line para que se pueda simular dicho muestreo paso por paso tal y como lo planteamos al hacer los problemas a mano.  Si quieres ver todas las aplicaciones on-line publicadas hasta el momento puedes hacerlo desde aquí.

El diseño de la página ha sido realizado por Fernando Meneses, estudiante de Ingeniería Multimedia que ha participado también en la realización de alguna  de dichas aplicaciones y que amablemente me ha permitido usar dicho diseño para publicarlas. Pincha en la imagen de la entrada o en el siguiente  enlace  si quieres acceder a ella:

Aplicación sobre muestreo sistemático