Tal día como hoy, 5 de junio, pero de 1900 nacía Dennis Gabor, «padre de la holografía»

Dennis Gabor (1900-1979) nació el 5 de junio de 1900 en Budapest, Hungría, un país que entonces formaba parte de la Monarquía Dual Austro-Húngara. Aunque la física le fascinaba, decidió estudiar ingeniería. Más tarde escribió, «ser físico no era todavía una profesión en Hungría y ¿con apenas media docena de cátedras de física en todo el país, quién podría haber sido tan presuntuoso para aspirar a una de ellas?». Al cumplir los dieciocho años fue enviado al norte de Italia para servir en la artillería austro-húngara en los últimos meses de la Primera Guerra Mundial y finalizada la contienda inició estudios de ingeniería en Budapest que concluyó en la Universidad Técnica de Berlín donde obtuvo el Título de Ingeniero Eléctrico en 1924 y el de Doctor Ingeniero en 1927 con una tesis doctoral relacionada con el desarrollo de uno de los primeros oscilógrafos de rayos catódicos de alta velocidad.

Dennis Gabor (1900-1979). Nobel Museum, Stockholm. Credit: A. Beléndez

Dennis Gabor (1900-1979). Nobel Museum, Stockholm. Credit: A. Beléndez

El camino hacia la holografía

La holografía comienza a dar sus primeros pasos en 1947 en un laboratorio de una empresa de ingeniería eléctrica en el que Gabor trabajaba en la mejora del microscopio electrónico. Con este instrumento se había aumentado en cien veces el poder de resolución de los mejores microscopios ópticos y se estaba muy cerca de resolver las estructuras atómicas, pero los sistemas no eran lo bastante perfectos. Su limitación estaba relacionada con la aberración esférica de las lentes magnéticas del microscopio. Para resolver este problema Gabor se preguntó: «¿Por qué no tomar una mala imagen electrónica, pero que contenga la información ‘total’ de la misma, reconstruirla y corregirla mediante métodos ópticos?».

La contestación a esta pregunta se le ocurrió mientras esperaba para jugar un partido de tenis el Domingo de Pascua de 1947  y consistía en considerar un proceso en dos etapas. En la primera etapa, el registro, produciría el diagrama interferencial entre el haz de electrones objeto (onda objeto) y un “fondo coherente” (onda de referencia) que registraría en una placa fotográfica. A este interferograma Gabor lo llamó holograma, del griego ‘holos’, que significa ‘la totalidad’, pues contiene la información total (la amplitud y la fase) de la onda objeto. En la segunda etapa, la reconstrucción, iluminaría el holograma con luz visible, reconstruiría el frente de onda original y podría corregirlo por métodos ópticos para obtener una buena imagen. Así pues, los principios físicos de la holografía están basados en la naturaleza ondulatoria de la luz y son la interferencia (en la etapa de registro) y la difracción (en la etapa de reconstrucción). Gabor dedicó el resto del año trabajando en su ‘nuevo principio de microscopía’ (new microscopic principle).

Para conseguir franjas de contrastadas es necesario disponer de una fuente de iluminación de gran coherencia, la cual no existía en tiempos de Gabor. A pesar de ello, en 1948 realizó el primer holograma con luz proveniente de una lámpara de mercurio con un filtro para la luz verde, una de las mejores fuentes de luz coherente antes del láser. El objeto de este primer holograma era una pequeña diapositiva circular de 1.4 mm de diámetro que contenía los nombres HuygensYoung y Fresnel, tres físicos a los que Gabor consideraba importantes por haber puesto las bases de su técnica a la que denominó ‘reconstrucción del frente de onda’ (wave-front reconstruction). Estos hologramas no resultan impresionantes vistos hoy en día, pero constituyeron una demostración convincente de un nuevo e interesante principio de la óptica.

Seguir leyendo en OpenMind

About Augusto Beléndez

Catedrático de Física Aplicada en el Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal de la Universidad de Alicante. Miembro del Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías (IUFACyT) así como del Grupo de Investigación "Holografía y Procesado Óptico" (GHPO) y del Grupo de Innovación Tecnológica-Educativa "Física, Óptica y Telecomunicaciones" (GITE-FOT). Miembro de la RSEF y SEDOPTICA. Senior member de la OSA y Fellow member del SPIE. ---------- Full Professor of Applied Physics in the Department of Physics, Systems Engineering and Signal Theory at the University of Alicante (Spain). Member of the University Institute of Physics Applied to Sciences and Technologies (IUFACyT) as well as the Research Group "Holography and Optical Processing" (GHPO) and the Technological-Educational Innovation Group "Physics, Optics and Telecommunications" (GITE-FOT). Member of the RSEF and SEDOPTICA. OSA Senior member and SPIE Fellow.
This entry was posted in Año de la Luz-2015, Divulgación, Historia de la Física, Premios Nobel and tagged , , , , . Bookmark the permalink.