Los campos magnéticos difieren de los campos eléctricos que estudiado hasta el momento en varios aspectos. Por un lado, son producidos por cargas eléctricas que se mueven respecto al observador, como las corrientes eléctricas, en lugar de estar producidos por cargas eléctricas en reposo como sucedía con los campos eléctricos que estudiamos en los temas 2 y 5 (electrostática). Además, las líneas de fuerza del campo magnético son cerradas sobre sí mismas, a diferencia de las líneas del campo electrostático que son abiertas, con origen en las cargas eléctricas positivas y final en las negativas. Sin embargo, las líneas del campo magnético no empiezan en un punto y terminan en otro, sino que, de alguna manera, se enrollan en torno a las corrientes eléctricas que originan el campo. Como en los temas 3 y 4, en este tema se considerarán únicamente campos magnéticos estáticos o estacionarios, es decir, independientes del tiempo.
Comenzamos con la definición del flujo del campo magnético a través de una superficie, de forma análoga a como se definió el flujo del campo eléctrico, presentándose la ley de Gauss para el campo magnético, válida no sólo para campos estacionarios, sino para cualquier tipo de campo y que constituye otra de las cuatro ecuaciones de Maxwell del campo electromagnético. Es importante señalar que las líneas del campo magnético son cerradas sobre sí mismas debido a la no existencia de monopolos magnéticos y esto da lugar a que el flujo del campo magnético a través de una superficie cerrada es siempre nulo. A continuación se analiza la ley de Ampère, aplicándola al cálculo de algunos campos magnéticos de interés práctico producidos por distribuciones de corriente de gran simetría como el creado por una corriente rectilínea e indefinida, por la corriente en un cilindro, en puntos dentro y fuera del mismo, o el campo magnético creado por un solenoide muy largo. Es importante puntualizar que la ley de Ampère es una prueba de que el campo magnético no es un campo conservativo, ya que su circulación a lo largo de cualquier línea cerrada no es siempre nula, sino que para campos estacionarios es proporcional a la corriente eléctrica enlazada por la línea cerrada.
Finalmente se analiza la magnetización de la materia, pues al estar constituida por átomos y éstos poseer un núcleo positivo rodeado de electrones en movimiento, es lógico pensar que la materia debe presentar ciertas propiedades magnéticas asociadas al movimiento de sus cargas. Es posible observar experimentalmente que la magnetización de un material varía cuando se aplica un campo magnético externo o cuando varía su temperatura, de modo que los materiales, en función de su respuesta, se pueden clasificar en diamagnéticos, paramagnéticos y ferromagnéticos.
Pingback: Fundamentos Físicos de la Ingeniería » Electricidad+Magnetismo = Electromagnetismo
Aquí os dejo un video de El Hormiguero, donde como sabéis hay una sección del programa en que se realizan experimentos científicos sencillos con carácter divulgativo. Es una pasada cuando se ven las líneas de campo en la televisión, yo no lo hago por no cargármela:
http://www.youtube.com/watch?v=fFyIUtn2hFE