La Mecánica estudia el movimiento y su relación con las causas que lo producen. La Mecánica es la más antigua rama de la Física y, sin lugar a dudas, es también la más elaborada. Sus modelos han sido aplicados a otros campos, incluso fuera de la Física, de ahí su interés como fundamento para entender otras parcelas científicas y técnicas.
Primeramente es conveniente describir el movimiento, sin considerar las causas del mismo, a lo que se dedica la parte de la Mecánica conocida como Cinemática. A este estudio se dedica este tema, considerando el caso de la cinemática de la partícula o punto material, es decir, un cuerpo cuyo tamaño y forma no tienen importancia en la resolución de un problema mecánico determinado.
En este tema se repasan conceptos como el vector de posición, el vector desplazamiento y la velocidad y aceleraciones medias e instantáneas. Un aspecto importante a tener en cuenta es que el vector velocidad es un vector tangente a la trayectoria de la partícula en cada punto. Se analizan las componentes intrínsecas de la aceleración: aceleración tangencial y aceleración normal o centrípeta. La aceleración tangencial tiene en cuenta la variación del módulo del vector velocidad con el tiempo, mientras que la aceleración normal expresa la variación de la dirección del vector velocidad con el tiempo. La aceleración normal está dirigida hacia el centro de curvatura de la trayectoria en cada punto y es inversamente proporcional al radio de curvatura de esta trayectoria. Obviamente, para un movimiento rectilíneo no hay aceleración normal y para uno circular el radio de curvatura de la trayectoria es constante.
Seguidamente se estudia el movimiento rectilíneo y algunos casos particulares como el movimiento rectilíneo uniforme en el que la aceleración es nula y la velocidad constante y el movimiento rectilíneo uniformemente acelerado, caracterizado porque la aceleración es constante. Otro tipo de movimiento de interés que también se estudia en este tema es el movimiento circular en el que se analizan los conceptos de velocidad y aceleración angulares y su relación con la velocidad y aceleración lineales. Como ejemplos se estudian el movimiento circular uniforme y el movimiento circular uniformemente acelerado. Una cuestión importante a tener en cuenta son las relaciones vectoriales entre la velocidad angular, la velocidad lineal, la aceleración angular y la aceleración lineal.
El tema finaliza con el estudio del movimiento parabólico, como es el movimiento de un proyectil, el cual permite ver cómo, para su análisis, se puede descomponer un movimiento, en este caso en dos dimensiones, como la superposición de dos movimientos unidimensionales independientes en dos direcciones perpendiculares. Cuestiones como el alcance y la altura máxima también son analizadas.
Es importante tener en cuenta en todo el desarrollo del tema que el movimiento es un concepto relativo y debe por tanto referirse siempre a un sistema particular de referencia, elegido por el observador.
Bibliografía
Alonso, M. y Finn, E. J., Física (Addison-Wesley Iberoamericana, Wilmington, 1995). Caps. 3, 4 y 5.
Beléndez, A., Bernabeu, J. G. y Pastor, C., Temas de Física para Ingeniería: Cinemática del punto material (1988). http://hdl.handle.net/10045/11342
Tipler, P. A. y Mosca, G., Física para la Ciencia y la Tecnología, Vol. I (Reverté, Barcelona, 2005). Caps. 2 y 3.
Young, H. D. y Freedman, R. A., Física Universitaria (Sears – Zemansky), Vol. I (Pearson Educación, México, 2009). Caps. 2 y 3.
Gettys, W. E., Keller, F. J. y Skove, M. J., Física para Ciencias e Ingeniería, Vol. I (McGraw-Hill, Madrid, 2005). Caps. 3 y 4.