Curso 2016-2017: Bienvenidos

Bienvenidos al blog de Física del Grado en Ingeniería en Sonido e Imagen en Telecomunicación de la Universidad de Alicante. En él podéis encontrar información sobre las asignaturas “Fundamentos Físicos de la Ingeniería I” y “Fundamentos Físicos de la Ingeniería II”, así como otros temas y enlaces de interés. Espero que entre todos podamos sacerle partido a esta nueva herramienta de comunicación.

Guías de los temas

Resúmenes de los temas

Enunciados de los problemas

 

Posted in Asignatura, Noticias | Tagged , , , | Comments Off on Curso 2016-2017: Bienvenidos

«Demasiado valioso para morir»

El físico Henry Moseley (1887-1915) falleció un 10 de agosto en Galípoli

Hacía calor, hacía mucho calor… Eran las 04:30 horas del 10 de agosto de 1915 cuando el coronel de la 19ª División del Ejército del Imperio Otomano, Mustafa Kemal Atatürk –quien años después sería el «padre» y primer presidente de la República de Turquía–, daba la señal alzando la mano y ordenaba a sus tropas atacar con la bayoneta calada en las escarpadas alturas de la colina de Chunuk Bair. Apenas había transcurrido un año desde el inicio de la Primera Guerra Mundial. Las tropas de Kemal estaban destacadas en la Península de Galípoli, en la parte europea de Turquía, frente al estrecho de los Dardanelos, una región en la que siguiendo un plan de Winston Churchill, Primer Lord del Almirantazgo, habían desembarcado tropas aliadas: británicas, francesas, australianas y neozelandesas (estos dos últimos conocidos como los ANZAC, acrónimo de Australian and New Zealand Army Corps). Quizás más de uno de los lectores recordará al actor Mel Gibson, protagonista de la película australiana Gallipoli de 1981, subiendo por las playas con el sombrero característico de las tropas australianas.

Fotograma de la película Galípoli (1981).

Ese 10 de agosto, el ala derecha de las tropas de Kamal llegaba hasta una pequeña meseta conocida como «la granja», donde entabló combate cuerpo a cuerpo con las tropas británicas allí desatacadas y que habían sido desembarcadas pocos días antes, eran los hombres de la 38ª Brigada. El teniente británico Henry Moseley estaba en medio de esta cruenta refriega con menos de treinta soldados. Moseley intentó desesperadamente pedir refuerzos telegrafiando al cuartel general. Mientras lo hacía una bala disparada por un francotirador turco impactaba en su cabeza, muriendo instantáneamente. Tenía 27 años. Cuando más de la mitad de los soldados británicos habían muerto o estaban heridos, los supervivientes retrocedieron. Según un informe del 13 de agosto de 1915, tras los ataques turcos de Chunuk Bair del 10 de agosto los hospitales militares británicos de Egipto y Malta estaban totalmente llenos. Tras la campaña de Galípoli, Winston Churchill tuvo que dimitir como Primer Lord del Almirantazgo, mientras que Mustafa Kemal era ascendido a general y se convirtió en héroe nacional, recibiendo el título de Paşa (comandante).

Henry Gwyn Jeffreys Moseley había nacido en 23 de noviembre de 1887 en el seno de una familia acomodada. Tras graduarse en Física por la Universidad de Oxford, marchó en 1910 a la de Manchester para trabajar como investigador en el Laboratorio de Ernst Rutherford, Premio Nobel de Química dos años antes. Nueve de los discípulos de Rutherford fueron galardonados con el Premio Nobel y es muy probable que Moseley también lo habría sido. En la Universidad de Manchester, Moseley se interesó por la naturaleza de los rayos X y su relación con la estructura atómica, publicando su primer artículo científico en julio de 1913. Trabajó sobre el espectro de la radiación electromagnética y las transiciones de rayos X y su mayor contribución a la ciencia es la ley que lleva su nombre, la Ley de Moseley, en la que logró la justificación cuantitativa del concepto de número atómico. En sus tan sólo 40 meses de investigación científica, Moseley publicó ocho trabajos, algunos de los cuales dieron lugar a grandes avances en Física y Química. Muchos de los colegas de Moseley, familiarizados con su obra extraordinaria, declararon que él era un científico excepcional y que de no haber fallecido aquel aciago 10 de agosto de 1915, Henry Moseley habría sido galardonado con el Premio Nobel en pocos años, de hecho, estaba nominado para ese año de 1915.

Henry Moseley en su laboratorio – Universidad de Oxford, Museo de la historia de la ciencia.

La muerte de Moseley causó un gran impacto no sólo al director de su laboratorio, Ernst Rutherford, quién publicó varios artículos sobre su lamentable pérdida (incluido uno en la revista Nature el 9 de septiembre de 1915), sino en toda la sociedad británica. Tras su muerte, los titulares de los periódicos señalaban «sacrificio de un genio» y «demasiado valioso para morir». Tal fue el impacto que causó su desaparición, que se ha especulado que fue su muerte la que hizo que el gobierno británico tomara la decisión de no enviar al frente en época de guerra a sus científicos e ingenieros brillantes, con la idea de que podrían servir mejor a su país en la retaguardia.

Conferencia (Royal Society, 11/10/2013): ‘Sacrifice of a genius’: Henry Moseley’s role as a Signals Officer in World War One

La guerra es un auténtico asesinato en masa, nunca se puede ganar una guerra, siempre se sale perdiendo. El escritor Ernest Hemingway, reflexionando sobre la guerra, dejó la siguiente reflexión:

Jamás penséis que una guerra, por necesaria o justificada que parezca, deja de ser un crimen.

Publicado por A. Beléndez y E. Arribas (La Verdad de Alicante, 10/08/2015)

Posted in Año de la Luz-2015, Biografías, Divulgación, Historia de la Física, Prensa | Tagged , , , , | Comments Off on «Demasiado valioso para morir»

James Clerk Maxwell, «the man who changed the world forever», was born on this day in 1831

James Clerk Maxwell

Maxwell is considered as one of the most important scientists of all time and one of the greats in the history of physics, along with Newton and Einstein. Undoubtedly, his more important scientific contribution is the theory of the electromagnetic field, fundamental not only for the comprehension of natural phenomena, but also for its technical application, in particular in the today ever-present field of telecommunications. He was born in Edinburgh, Scotland, on 13 June 1831 to a well-established family. Two years later, the family moved to a small country estate in Middlebie, Galloway, about 90 miles southwest of Edinburg. His father had been inherited his estate and there he enthusiastically began to supervise the construction of a new house, which he called “Glenlair.” In Glenlair James Clerk Maxwell not only spent long periods of times but also he wrote some of his more important scientific contributions. After receiving private education in Glenlair, James was sent to Edinburgh Academy, where he spent five years. In 1847 he enrolled at Edinburgh University and, three years later, he went up to the University of Cambridge, the most influential center of physics at the time, where he graduated as Second Wrangler in the Mathematical Tripos of 1854 and he won the Smith Prize the same year. In the Smith’s Prize examination, question 8 was on Stokes’ Theorem. Some years later Maxwell would use this theorem in his work on the electromagnetic field.

Statute James Clerk Maxwell with his dog Toby at his feet and holding his colour wheel, Edinburgh (Scotland). Credit: A. Beléndez.

Statute James Clerk Maxwell with his dog Toby at his feet and holding his colour wheel, Edinburgh (Scotland). Credit: A. Beléndez.

In 1856, Maxwell got the Chair of Natural Philosophy at Marischal College, one of the two universities in Aberdeen at that time, where he spent four years. There he began his researches on colour theory and married Katherine Mary Dewar, daughter of the College Principal. Perhaps is less known that Maxwell was awarded the Adams Prize with an essay titled On the stability of the motion of Saturn’s rings which was published in 1859 and where he concluded that «the only system of rings which can exist is one composed of an indefinite number of unconnected particles, revolving around the planet with different velocities according to their respective distances.» Maxwell’s work about the Saturn’s rings was defined by George Airy, the Astronomer Royal, as «one of the most remarkable applications of mathematics to physics that I have ever seen.» In 1895, sixteen years after Maxwell’s death, the spectroscopic study made by the American astronomer James Keeler confirmed the theory of Maxwell that Saturn’s rings are made up of countless small objects.

A young James Clerk Maxwell holding his color wheel (Trinity College Library, Cambridge University). Credit: AIP Emilio Segre Visual Archives. Créditos: James Clerk Maxwell Foundation.

In 1860, he left Aberdeen to occupy another professorship in King’s College, London. The five years Maxwell spent in London were probably the most creative in his life: colour vision and gas kinetic theories as well as the dynamical theory of the electromagnetic field. There he also produced the world’s first colour photography, which was projected onto a screen at the Royal Institution in May of 1861. Maxwell was elected to the Royal Society three weeks later.

Maxwell is also one of the founders of statistical physics. In 1860 he published Illustrations of the dynamical theory of gases in which he needed only one page to obtain the distribution law of molecular speeds that bears his name. Maxwell was the first to formulate a statistical law that governs a physical phenomenon. Again, and as happened with his hypothesis of Saturn’s rings, this law also was proven experimentally in this case by the German physicist Otto Stern in 1920 using the molecular ray method.

Maxwell resigned his King’s professorship voluntarily in 1865, mid session, and went back to his Scottish estate in Glenlair. He wrote his magnus opus there, A Treatise on Electricity and Magnetism, published in 1873, two volumes of more than 500 pages each, peak of nineteenth century physics and comparable to Newton’s Principia, published almost two centuries before. In his Treatise Maxwell manages to unify all known phenomena at the moment regarding electricity and magnetism.

In 1871, Maxwell was appointed to take up the newly created Professorship of Experimental Physics at the University of Cambridge, and he became the first director of a new research centre, the Cavendish Laboratory, and became the first Cavendish Professor of Physics. Other directors who succeeded him were Lord Rayleigh, J. J. Thomson and Rutherford. To date 29 Nobel Prize winners have worked in the Cavendish Laboratory. He supervised every detail of the construction of the Laboratory. In 1877, Maxwell’s health started to fail. He passed away due to an abdominal cancer on 5 November 1879. He was 48. Before dying, one of the things that most concerned to Maxwell was the future of his wife Katherine, whom he so loved.

Old Cavendish Laboratory, University of Cambridge.

A Dynamical Theory of the Electromagnetic Field

Maxwell left us contributions to colour theory, optics, Saturn’s rings, statics, dynamics, solids, instruments and statistical physics. However, his most important contributions were to electromagnetism. In 1856, he published On Faraday’s lines of force; in 1861, On physical lines of force. In these two articles he provided a mathematical explanation for Faraday’s ideas on electrical and magnetic phenomena depending on the distribution of lines of force in space, definitively abandoning the classical doctrine of electrical and magnetic forces as actions at a distance. His mathematical theory included the aether, that «most subtle spirit», as Newton described it. He studied electromagnetic interactions quite naturally in the context of an omnipresent aether. Maxwell stood firm that the aether was not a hypothetical entity, but a real one and, in fact, for physicists in the nineteenth century, aether was as real as the rocks supporting the Cavendish Laboratory.

As has been mentioned at the beginning, in 1865 –when Maxwell was 33– he published A Dynamical Theory of the Electromagnetic Field –probably his most important paper–, where he presented a complete electromagnetic theory and which included twenty equations he called «General Equations of the Electromagnetic Field.» He links them to twenty variables governing the behaviour of electromagnetic interaction. The article is 53 pages long, divided in seven parts. His general equations, which summarised the experimental laws of electromagnetism, provide a complete theoretical basis for the treatment of classical electromagnetic phenomena. In 1884, Oliver Heaviside rewrote the twenty equations of the electromagnetic field using vectors into the today’s modern notation: the four equations of electromagnetic field. Since then, these equations were known as Hertz-Heaviside’s equations or Maxwell-Hertz’s equations, until 1940 when Albert Einstein coined the term «Maxwell’s equations» that we use today. The Austrian physicist Ludwig Boltzmann considered them such beautiful equations in their simplicity and elegance that, with a quote from Goethe’s Faust, he asked himself: «War es ein Gott, der diese Zeichen schrieb?» (Was it a god who wrote these signs?).

In the sixth part of his 1865 paper, «Electromagnetic Theory of Light», in which he refers to the paper titled Thoughts on Ray-vibrations published by Faraday in 1846, saying «… the electromagnetic theory of light as proposed by him, is the same in substance as that which I have begun to develop in this paper, except that in 1846 there were no data to calculate the velocity of propagation.» Maxwell also concludes that «light and magnetism are affections of the same substance, and that light is an electromagnetic disturbance propagated through the field according to electromagnetic laws.» As Arthur Zajonc pointed out in his book Catching the Light, «In this single sentence, Maxwell proposed a profound change in our image of light, one is which light, electricity, and magnetism would now, and forever after, be entwined. Two arenas of physics, which to all outward appearances have nothing in common, were to be united.» When he wrote «affections of the same substance», that substance was the ether. Although Maxwell’s mathematical formulation did not require the ether, it was still omnipresent. He proved that the equations of the electromagnetic field could combine into a wave equation and suggested the existence of electromagnetic waves. Calculating the speed of propagation of these waves, he obtained the value of the speed of light, and concluded that it was an electromagnetic wave. Einstein referred to that crucial moment of Maxwell by pointing out: «Imagine [Maxwell’s] feelings when the differential equations he had formulated proved to him that electromagnetic fields spread in the form of polarised waves, and at the speed of light! To few men in the world has such an experience been vouchsafed» Maxwell deduced that electromagnetic waves are transverse waves and he got what is now known as «Maxwell relation» between the refractive index of a medium and the square root of its dielectric constant.

In 1888, nine years after Maxwell’s death, Heinrich Hertz probed experimentally the existence of electromagnetics waves. This meant not only the confirmation of Maxwell’s theory but also a win over telegraph engineers as William Preece, Engineer-in-Chief of the British General Post Office, which denied the applicability of Maxwellian physics to engineering. If Maxwell had lived in 1901 when the Italian engineer and Nobel Prize in Physics in 1909 Guglielmo Marconi made the first transatlantic radio communication across the Atlantic ocean, from Cornwall (England) to St. John’s, in Newfoundland (Canada) –using the electromagnetic waves whose existence Maxwell had predicted in 1865– perhaps Maxwell’s fame would be far greater today.

The significance of Maxwell’s concept of electromagnetic waves, as subsequent history has shown, goes far beyond its application to light. Gamma rays, X rays, ultraviolet radiation, visible light, infrared radiation, microwaves and radio and television waves constitute the spectrum of electromagnetic waves, whose existence was predicted by Maxwell 150 years ago.

Electromagnetic spectrum with visible light highlighted (Wikipedia. Author: Philip Ronan).

With his work, Maxwell unified electricity, magnetism and light, which are known as «Maxwell’s synthesis.» Such a synthesis set a milestone in the history of the unification of forces that were so powerful that many nineteenth-century physicists thought the physical laws were already sufficiently comprehended. This led physicist and Nobel Prize in Physics in 1907 Albert Michelson to write in his book Light and Their Uses published in 1903: «The more important fundamental laws and facts in physical sciences have all been discovered, and these are now so firmly established that the possibility of their ever being supplanted in consequence of new discoveries is exceedingly remote … Our future discoveries must be looked for in the sixth place of decimals.» Nothing could be further from the truth. In the first years of the twentieth century there were two Kuhnian paradigm shifts in physics: Planck’s quantum theory (1900) and Einstein’s theory of special relativity (1905), both consequences of Maxwell’s electromagnetic theory and related to light, which laid the groundwork for these two revolutionary ideas. It is clear that Maxwell opened the doors for twentieth century physics.

Maxwell’s Legacy

Although Maxwell’s work on electromagnetism was essential, it had got some limitations, like trying to reconcile Newtonian mechanics and maxwellian electromagnetism. This problem was finally solved in 1905 when Einstein published his theory of special relativity. After Einstein’s works, the luminiferous aether –the focus of nineteenth century physics– was dead and buried. Even Albert Einstein recognised that his «the special theory of relativity owes its origins to Maxwell’s equations.» In 1931, at the centenary of Maxwell’s birth, in an article titled Maxwell’s influence on the development of the conception of physical reality, Einstein claimed that «one scientific epoch ended and another began with James Clerk Maxwell» and «the work of James Clerk Maxwell changed the world forever.»

Richard Feynman, Nobel Prize in Physics in 1965 for his work in quantum electrodynamics (QED), the quantum theory of the electromagnetic field, pointed out: «From a long view of the history of mankind, seen from, say, ten thousand years from now, there can be little doubt that the most significant event of the 19th century will be judged as Maxwell’s discovery of the laws of electrodynamics.»

MORE INFORMATION:

Augisto Beléndez, “Electromagnetic Unification: 150th Anniversary of Maxwell’s Equations”, Mètode Nº 84, Winter 2014/15.

J. C. Maxwell, “A Dynamical Theory of the Electromagnetic Field”, Philosophical Transactions of the Royal Society of London, 155: 459-512 (1865).

L. Campbell and W. Garnett, The life of James Clerk Maxwell (MacMillan and co., Londres 1882).

N. Forbes and B. Mahon, Faraday, Maxwell, and the Electromagnetic Field: How two men revolutionized Physics (Prometheus Books, New York 2014).

R. Flood, M. McCartney and A. Whitaker (eds.), James Clerk Maxwell. Perspectives on his Life and Work (Oxford University Press, Oxford 2014).

Posted in Biografías, Divulgación, Historia de la Física | Tagged , , , , , | Comments Off on James Clerk Maxwell, «the man who changed the world forever», was born on this day in 1831

Tal día como hoy, 13 de junio, nacía Thomas Young, «el último hombre que lo sabía todo»

Thomas Young nació el 13 de junio de 1773 en Milverton, al sudoeste de Inglaterra, en el seno de una familia cuáquera. Era el mayor de diez hermanos y recibió una educación estricta. Fue un niño prodigio. A los dos años ya leía y a los seis había leído dos veces la Biblia de principio a fin. Conocía una docena de lenguas incluidas el latín y el griego antiguo y estudió Medicina, aunque a la larga no tuvo éxito como médico, en parte por su poca habilidad para reconfortar a los pacientes. Con veintiocho años abandonó la práctica médica para unirse a la Royal Institution de Londres. En dos años ya había impartido 91 conferencias. Fue uno de los primeros en descifrar jeroglíficos egipcios y desempeñó un papel esencial en la descodificación de la piedra de Rosetta. Fue un lingüista fenomenal, el primero en identificar similitudes entre numerosos idiomas a los que denominó indoeuropeos.

Thomas Young (1773-1829) / Créditos: Wikipedia

Llevó a cabo estudios sobre la visión y el ojo humano y propuso la teoría tricromática de la visión confirmada ciento cincuenta años después. Investigó sobre el sonido, la audición y la voz humana y fue entonces cuando se preguntó si el sonido y la luz no tendrían la misma naturaleza ondulatoria. La Enciclopedia Británica define a Young como «medico y físico inglés que estableció el principio de la interferencia de la luz resucitando la teoría ondulatoria de la luz abandonada en el siglo anterior. También fue un egiptólogo que ayudó a descifrar la Piedra de Rosetta». De hecho, Young realizó descubrimientos en prácticamente todos los campos que estudió, incluyendo física (la teoría ondulatoria de la luz), ingeniería (el módulo de elasticidad), fisiología (el mecanismo de la visión), egiptología, lingüística, etc. Para muchos Young es «el último hombre que lo sabía todo».

Su contribución fundamental al campo de la luz es el experimento de la doble rendija, considerado no sólo como «uno de los experimentos más bellos de la física», sino también «el experimento favorito con luz». Con este experimento Young desafió las teorías de Isaac Newton y demostró que la luz es una onda, que probaba que la luz sufre el fenómeno de las interferencias que es propio de las ondas. Entre 1801 y 1803 presentó una serie de conferencias en la Royal Society subrayando la teoría ondulatoria de la luz y añadiendo a la misma un nuevo concepto fundamental, el principio de interferencia. El experimento de la doble rendija es maravillosamente simple y permitió a Thomas Young demostrar de forma convincente y por primera vez la naturaleza ondulatoria de la luz. Cuando las ondas provenientes de dos rendijas estrechas se superponen sobre una pantalla colocada a cierta distancia paralela a la línea que conecta estas rendijas, aparece en la pantalla un patrón de franjas claras y oscuras espaciadas regularmente (patrón de interferencia). Esta es la primera prueba clara de que luz más luz puede dar lugar a oscuridad. En la interferencia tiene lugar una redistribución espacial de la intensidad luminosa sin que se viole la conservación de la energía. Este fenómeno se conoce como interferencia y con este experimento se corroboraron las ideas intuitivas de Huygens respecto al carácter ondulatorio de la luz. Thomas Young esperaba este resultado pues creía firmemente en la teoría ondulatoria de la luz y su juicio éste había sido el más importante de sus muchos logros científicos.

BBVA-OpenMind-Augusto-Belendez-Thomas-Young-3

Experimento de la doble rendija mostrando el diagrama interferencial de la luz / Créditos: Wikipedia

El 12 de noviembre 1801 presentó ante la Royal Society la Bakerian Lecture titulada “On the Theory of Light and Colours” (Sobre la Teoría de la Luz y los Colores) y el 24 de noviembre de 1803 también la Bakerian Lecture “Experiments and Calculations relative to Physical Optics” (Experimentos y cálculos relativos a la óptica física). En esta última presentaba la «demostración experimental de la ley general de la interferencia de la luz» y una «inferencia argumentativa sobre la naturaleza de la luz», concluyendo que la luz era una onda. Como todas las ondas conocidas necesitaban un medio material para su propagación, como sucede con las ondas sonoras o las ondas en el agua, Young consideró que la luz se propagaba en un medio, el éter luminífero, concluyendo que «A luminiferous Ether pervades de Universe, rare and elastic in high degree» (Un éter luminífero impregna todo el Universo, raro y elástico en alto grado) y afirmó de forma contundente que «Radiant light consists in Undulations of the luminiferous Ether» (la luz radiante consiste en ondulaciones del éter luminífero). Asimismo señaló que la sensación de los diferentes colores depende de la distinta frecuencia de las vibraciones de la luz que excita la retina.

BBVA-OpenMind-Augusto-Belendez-Thomas-Young-4

Diagrama interferencial observado por Young (Plate XXX, Fig. 442, A Course of Lectures on Natural Philosophy and the Mechanical Arts. Thomas Young, 1807) / Créditos: Wikipedia

Sin embargo, en el año 1803 casi nadie aceptó de forma inmediata las ideas radicales de Young sobre la naturaleza de la luz. Young publicó en 1807 su magnus opusA Course of Lectures on Natural Philosophy and the Mechanical Arts, consistente en dos volúmenes con más de mil quinientas páginas y que fue descrito por el físico Joseph Larmor (1857-1942) como «el más grande y el más original de todos los cursos publicados». En la Lección 39 se describe el experimento de la doble rendija y además el libro incluye una serie de diagramas sobre el experimento en la Lámina XXX.

Gracias a las contribuciones realizadas por Augustin Fresnel, la teoría ondulatoria de la luz –que Young demostró en su famoso experimento– fue finalmente aceptada.

Bibliografía

Robert P. Crease, El prisma y el péndulo: Los diez experimentos más bellos de la ciencia (Crítica. Barcelona, 2006).

Liesbeth Venema, Light, enchanted (of schemmes and memes, a community blog from nature.com), 1 de mayo de 2015.

Andrew Robinson, “Thomas Young: The Man Who Knew Everything”, History Today,vol. 56, pp. 53–57 (2006).

Andrew Robinson, The Last Man Who Knew Everything (Pi Press. New York, 2006).

Augusto Beléndez, “Thomas Young y la naturaleza ondulatoria de la luz”, BBVAOpenMind, 13 de junio de 2015

Posted in Biografías, Divulgación, Historia de la Física | Tagged , , , , | Comments Off on Tal día como hoy, 13 de junio, nacía Thomas Young, «el último hombre que lo sabía todo»

Jacques Arsène D’Arsonval: Médico, físico pero sobre todo … inventor

El médico, físico e inventor francés Jacques Arsène D’Arsonval (1851-1940) nació un 8 de junio.

Médico y físico francés. Realizó sus estudios de Medicina en las universidades de Poitiers, Limoges y París. Doctorado por el Collège de France en 1876 con una tesis sobre la elasticidad pulmonar, premiada por la facultad de Medicina y que le franqueó el acceso al cuerpo docente de dicha institución, el doctor Claude Bernard abrió para él las puertas del laboratorio de física biológica en 1882. Fue nombrado ese año profesor suplente de medicina experimental, y en 1894 profesor en propiedad de dicha cátedra.

El primer galvanómetro de imán móvil tenía la desventaja de ser afectado por cualquier imán u objeto de hierro colocado en su cercanía, y la desviación de su aguja no era proporcionalmente lineal a la corriente. En 1882, Jacques-Arsène d’Arsonval desarrolló un dispositivo -el galvanómetro D’Arsonval– con un imán estático permanente y una bobina de alambre en movimiento, suspendida por resortes en espiral. El campo magnético concentrado y la delicada suspensión hacían de éste un instrumento sensible que podía ser montado en cualquier posición.

Galvanómetro D’Arsonval

Inventó el desfibrilador y un tipo de teléfono magnetoeléctrico, diseñó diversos procedimientos de fabricación industrial de aire líquido y construyó una serie de acumuladores eléctricos que se pusieron en funcionamiento en muchos medios de transporte (aeroplanos, trenes y submarinos). También fue uno de los diseñadores del equipo de telegrafía sin hilos que se instaló en la torre Eiffel.

Sus últimos trabajos los realizó en el laboratorio Ampère de París, que él mismo fundó. Fue elegido presidente de la Academia de Ciencias en 1917, institución en cuyas Memorias publicó lo más granado de sus investigaciones. Fue además miembro de la Academia de Medicina y galardonado con la Legión de Honor. Entre sus obras más importantes se encuentra Recherches théoriques et expérimentales sur le rôle de l’électricité pulmonaire y un Tratado de Física Biológica.

Bibliografía

Jacques Arsène D’Arsonval, Biografías y Vidas (La enciclopedia biográfica en línea)

Jacques Arsène D’Arsonval, Wikipedia (consultado el 7 de junio de 2016)

Posted in Biografías, Divulgación, Historia de la Física | Tagged , , , | Comments Off on Jacques Arsène D’Arsonval: Médico, físico pero sobre todo … inventor