Comienza la asignatura “Electromagnetismo II” del Grado en Física de la UA

Contenidos para el curso 2023-24

Tema 1.-  CIRCUITOS DE CORRIENTE ALTERNA

  • Introducción
  • Elementos básicos de una red
  • Circuitos en régimen alterno
  • Potencia en régimen alterno
  • Resonancia
  • Leyes de Kirchhoff
  • Método de las corrientes de malla
  • Teoremas relativos a circuitos

Tema 2.-  ECUACIONES DE MAXWELL Y LEYES DE CONSERVACIÓN

  • Introducción
  • Corriente de desplazamiento. Ley de Ampère-Maxwell
  • Ecuaciones de Maxwell en el espacio libre y en medios materiales
  • Condiciones de contorno
  • Ecuación de continuidad
  • Energía electromagnética. Vector de Poynting
  • Momento lineal del campo electromagnético
  • Momento angular del campo electromagnético
  • Sistemas de unidades

Tema 3.-  ONDAS ELECTROMAGNÉTICAS

  • Introducción
  • Ecuación de ondas para los campos
  • Ondas electromagnéticas en el espacio libre
  • Energía y momento lineal de una onda electromagnética
  • Ondas electromagnéticas en dieléctricos
  • Ondas electromagnéticas en conductores
  • Medios dispersivos: velocidad de grupo y velocidad de fase
  • Ondas guiadas

Tema 4.-  DINÁMICA DE PARTÍCULAS RELATIVISTAS EN CAMPOS ELECTROMAGNÉTICOS

  • Introducción
  • Cinemática y dinámica relativistas
  • Tetrapotencial campo. Función de Lagrange
  • Ecuaciones de movimiento en forma covariante. Tensor campo electromagnético
  • Fuerza de Lorentz. Expresión covariante de la fuerza
  • Invariancia gauge
  • Formulación lagrangiana no covariante
  • Transformaciones de los campos
  • Invariantes del campo electromagnético
  • Campo creado por una carga móvil: ley de Biot-Savart

Tema 5.-  LAS ECUACIONES DE MAXWELL EN EL ESPACIO LIBRE

  • Introducción
  • Contenido físico de las ecuaciones de Maxwell (I)
  • Conservación de la carga y tetravector corriente
  • Ecuaciones de Maxwell en forma covariante
  • Ecuaciones de onda para los potenciales: gauges
  • Contenido físico de las ecuaciones de Maxwell (II)

Tema 6.-  SOLUCIÓN GENERAL DE LAS ECUACIONES DE MAXWELL

  • Introducción
  • Ondas esféricas asociadas a una carga puntual en el origen. Potenciales retardados
  • Expresión general para los potenciales retardados
  • Comparación con el caso estático: resultados con validez general y parcial
  • Potenciales para una carga móvil: solución de Liénard-Wiechert
  • Campos creados por una carga en movimiento arbitrario: campo próximo y campo de radiación

Tema 7.-  TEORÍA DE LA RADIACIÓN

  • Introducción
  • Radiación por una carga acelerada en la aproximación no-relativista de Larmor: aproximación dipolar
  • Radiación de un dipolo eléctrico
  • Radiación de un dipolo magnético
  • Radiación por una carga acelerada en el caso general
  • Acelerador lineal y acelerador circular. Radiación de sincrotrón
  • Reacción de radiación. Ecuación de Abraham-Lorentz

Tema 8.-  FORMULACIÓN LAGRANGIANA DEL CAMPO ELECTROMAGNÉTICO

  • Introducción
  • Formulación lagrangiana de un sistema discreto
  • Transición de un sistema discreto a un sistema continuo
  • Formulación lagrangiana de un campo
  • Lagrangiano para el campo electromagnético y formulación covariante de las ecuaciones de Maxwell
  • Tensor energía-impulso
  • Simetrización del tensor energía-impulso. Teorema de Poynting
  • Campo electromagnético con partículas. Leyes de conservación
  • Invariancia gauge y conservación de la carga
Posted in Enseñanza/aprendizaje, Materiales docentes | Tagged , , , | Comments Off on Comienza la asignatura “Electromagnetismo II” del Grado en Física de la UA

Comienza la asignatura “Fundamentos Físicos de la Ingeniería I” del Grado en Ingeniería en Sonido e Imagen en Telecomunicación de la UA

Contenidos para el curso 2023-24

Tema 1. Cinemática

  • Introducción
  • Posición, velocidad y aceleración
  • Componentes intrínsecas de la aceleración
  • Movimientos rectilíneos
  • Movimientos circulares
  • Composición de movimientos. Tiro parabólico

Tema 2. Dinámica

  • Introducción
  • Leyes de Newton
  • Fuerza debida a la gravedad. Peso
  • Aplicación de las leyes de Newton
  • Momento lineal y momento angular

Tema 3. Trabajo y energía

  • Introducción
  • Trabajo y potencia
  • Energía cinética. Teorema de la energía cinética
  • Fuerzas conservativas. Energía potencial
  • Conservación de la energía mecánica
  • Choques

Tema 4. Calor y temperatura

  • Introducción
  • Equilibrio térmico y principio cero de la Termodinámica
  • Termómetros y escala de temperaturas del gas ideal
  • Ley de los gases ideales
  • Dilatación térmica
  • Cantidad de calor: capacidad calorífica y calor específico
  • Calorimetría, cambios de fase y calor latente
  • Propagación del calor por conducción
  • Propagación del calor por convección y radiación

Tema 5. Termodinámica

  • Introducción
  • Trabajo
  • Funciones de estado y ecuaciones de estado
  • Primer principio de la Termodinámica. Energía interna
  • Algunas aplicaciones del primer principio
  • Capacidades caloríficas de los gases
  • Máquinas térmicas y segundo principio de la Termodinámica
  • Rendimiento de las máquinas térmicas y frigoríficas
  • Ciclo de Carnot
  • Temperatura termodinámica
  • Entropía. Cálculo de variaciones de entropía
  • Entropía y segundo principio

Tema 6. Campo eléctrico

  • Introducción
  • Ley de Coulomb. Fuerza eléctrica entre cargas puntuales
  • Campo eléctrico
  • Movimiento de cargas en un campo eléctrico
  • Energía potencial y potencial eléctrico
  • Relación entre el campo eléctrico y el potencial
  • Flujo del campo eléctrico. Ley de Gauss
  • Cálculo del campo eléctrico mediante la ley de Gauss

Tema 5. Materiales y condensadores

  • Introducción
  • Bandas de energía electrónica
  • Conductores, aislantes y semiconductores
  • Semiconductores intrínsecos y extrínsecos
  • Ecuación del semiconductor y neutralidad eléctrica
  • Conductores en equilibrio electrostático
  • Capacidad y condensadores
  • Condensadores en serie y en paralelo
  • Energía electrostática
  • Dieléctricos

Tema 8. Corriente eléctrica

  • Introducción
  • Corriente y movimiento de cargas
  • Densidad de corriente
  • Ley de Ohm. Resistencia. Asociación de resistencias
  • Conductividad y resistividad
  • Aspectos energéticos de la corriente eléctrica. Ley de Joule
  • Amperímetros y voltímetros
  • Fenómenos de transporte en semiconductores
Posted in Asignatura, Materiales docentes, Temas | Tagged , , | Comments Off on Comienza la asignatura “Fundamentos Físicos de la Ingeniería I” del Grado en Ingeniería en Sonido e Imagen en Telecomunicación de la UA

Celebrating holography anniversaries: a historical perspective

The year 2022 marks the 75th anniversary of Dennis Gabor’s invention of the holographic method, what he called “microscopy by reconstructed wave-fronts”, as well as the 60th anniversary of the publication in 1962 of two seminal papers in the field of holography: the introduction of the reflection hologram by Yuri Denisyuk, and the description of the holographic process from the point of view of communication theory by Emmett Leith and Juris Upatnieks. Within the framework of these celebrations, a historical review of the origins of holography is presented with special emphasis on the contributions of Gabor, Denisyuk and Leith to the development of holography.

Enlace al artículo completo

Posted in Conferencias, Divulgación, Historia de la Física, Premios Nobel | Tagged , , , , | Comments Off on Celebrating holography anniversaries: a historical perspective

¿Por qué celebrar un Día Internacional de la Luz?

Los seres humanos siempre hemos sentido y seguimos sintiendo una gran fascinación por la luz, evidentemente porque la vista es uno de nuestros sentidos, quizás el más importante. Fenómenos luminosos como el arco iris, la aurora boreal, el parhelio, el fatamorgana o simplemente las salidas y puestas del Sol nos siguen maravillando como ya sucediera a nuestros antepasados. Lo cierto es que la luz afecta a cada día de nuestras vidas. Es evidente que la luz emitida por el Sol juega un papel fundamental en el desarrollo de la vida en la Tierra y es la principal fuente de energía de nuestro planeta. Ante la pregunta: ¿qué recibimos del Sol?, seguro que contestaríamos: luz y calor e incluso algunos añadirían rayos ultravioleta, de los que por suerte para nuestra salud la atmósfera terrestre nos protege en mayor o menor medida. Sin embargo, realmente no se trata de tres cosas distintas, sino que es sólo una: energía en forma de ondas electromagnéticas con longitudes de onda correspondientes a las radiaciones visible, infrarroja y ultravioleta, que producen en nuestros cuerpos efectos y sensaciones diferentes.

Después del gran éxito que supuso la celebración del Año Internacional de la Luz 2015, en el que se puso de manifiesto la importancia de las ciencias y tecnologías basadas en la luz y que dio lugar a más de 13.168 actividades desarrolladas en 147 países, el Consejo Ejecutivo de la UNESCO, en su sesión número 200, estableció el Día Internacional de la Luz (DIL) el 16 de mayo de cada año (200 EX / Decisión 27). La 39ª Conferencia General aprobó esta decisión en el documento 39 C/40. Este Día Internacional tiene como objetivo fundamental poner de manifiesto el papel fundamental que desempeñan la luz y sus tecnologías en todas las actividades humanas. La luz se encuentra en el origen de la vida, ha inspirado la belleza, a pintores, poetas, arquitectos… y es esencial en fotografía, cine, teatro o televisión, pues no cabe duda que afecta a la respuesta emocional de la audiencia. Basta mirar a nuestro alrededor para comprobar que las numerosas aplicaciones de la luz han revolucionado la sociedad a través de la ciencia, la ingeniería, la arquitectura, la medicina, las comunicaciones, la cultura, el arte y el ocio.

Por tanto, el Día Internacional de la Luz es una iniciativa global que pretende poner el foco en la importancia de la luz y en el papel que desempeña en la ciencia, la cultura y el arte, en la educación y el desarrollo sostenible, así como en campos tan diversos como la medicina, las comunicaciones y la energía. Esta amplitud de campos donde el papel de la luz es fundamental permitirá que muchos sectores de la sociedad en todo el mundo participen en actividades para demostrar cómo la ciencia, la tecnología, el arte y la cultura pueden ayudar a alcanzar los objetivos de la UNESCO: educación, igualdad y paz.

Las industrias relacionadas con la luz son auténticos motores económicos y desde la invención del láser, uno de los más importantes y versátiles instrumentos científicos, la Óptica y la Fotónica satisfacen cada vez más necesidades de la Humanidad en múltiples vertientes. Dan acceso a la información, facilitan las comunicaciones, ayudan a preservar el patrimonio cultural, promueven el desarrollo sostenible y aumentan la salud y el bienestar sociales. Las tecnologías basadas en la luz también aportan nuevas soluciones a los problemas mundiales en campos como la energía, la educación, la agricultura, el medioambiente y la sanidad. Sin embargo, la luz a veces no sólo es importante por su presencia, sino también por su ausencia. La contaminación lumínica se ha convertido en un auténtico problema de los países más desarrollados que no sólo afecta a las observaciones astronómicas (ya no podemos ver la Vía Láctea al mirar al cielo por la noche), sino también a pájaros, insectos, tortugas marinas y a otras criaturas nocturnas, además de suponer un auténtico despilfarro de energía.

Es indudable que el estudio de la luz y sus tecnologías se ha convertido en una disciplina transversal clave de la ciencia y la tecnología del siglo XXI, por lo que resulta esencial que seamos plenamente conscientes de la importancia del estudio científico de la luz y la aplicación de las tecnologías basadas en la luz para el desarrollo sostenible mundial. Al igual que a veces se ha denominado al siglo XX como el «siglo de la electrónica», quizás el siglo XXI sea el «siglo de la luz», fundamentalmente gracias a los avances en Óptica y Fotónica acaecidos en los últimos sesenta años.

Pero ¿por qué el 16 de mayo? La respuesta es que el 16 de mayo es el aniversario de la primera emisión láser que en 1960 obtuvo el físico e ingeniero Theodore Maiman. El láser es un ejemplo perfecto de cómo un descubrimiento científico puede generar beneficios revolucionarios para la sociedad en comunicaciones, atención médica y muchos otros campos. Sin embargo, el Día Internacional de la Luz no solo se refiere al láser y la ciencia. También incluye aspectos del arte, la cultura, el entretenimiento, de hecho ¡en todas partes está presente la luz! Este día desea ser también un llamamiento para fortalecer la cooperación científica y aprovechar su potencial para fomentar la paz y el desarrollo sostenible. Este 16 de mayo de 2020, además, celebramos el 60 aniversario del logro monumental de Maiman junto con el Día Internacional de la Luz.

En 1917 Albert Einstein señaló: «durante el resto de mi vida reflexionaré sobre lo que es la luz». El 16 de mayo de cada año, millones de personas en todo el mundo reflexionarán también sobre lo maravillosa que es la luz y sobre las múltiples maneras en que ésta y sus tecnologías pueden mejorar nuestras vidas.

Posted in Investigación, Noticias, Prensa | Tagged , , , , | Comments Off on ¿Por qué celebrar un Día Internacional de la Luz?

The laser turns 62!

In 1960 the laser, one of the most important and versatile scientific instruments of all time, was invented. It was on 16 May 1960, that the North American physicist and engineer, Theodore Maiman (1927-2007), obtained the first laser emission.

Press Photo Dr. Theodore H. Maiman with his new laser device in New York (July 7th, 1960).

This date is therefore of great importance not only for those of us who carry out research in the field of optics and other scientific fields, but also for the general public who use laser devices in their daily lives. CD, DVD and Blu-ray players, laser printers, barcode readers, and fibre-optic communication systems that connect to the worldwide web and Internet are just a few of the many examples of laser applications in our daily life. Lasers also have a range of important biomedical applications; for example they are used to correct myopia, treat certain tumours and even whiten teeth, not to mention the beauty clinics that continually bombard us with advertisements for laser depilation, which has become so popular nowadays. However, the laser is of great importance not only due to its numerous scientific and commercial applications or the fact that it is the essential tool in various state-of-the-art technologies but also because it was a key factor in the boom experienced by optics in the second half of the last century. Around 1950 “optics was widely considered a somewhat dull discipline with a great past, but without prospects of a great future” (Kragh, 2002). At that time, the most prestigious journals were full of scientific papers from other branches of physics. However, this situation changed dramatically thanks to the laser which led to a vigorous development of optics. It is indisputable that the laser triggered a spectacular reactivation in numerous areas of optics and gave rise to others such as optoelectronics, non-linear optics or optical communications.

This date is therefore of great importance not only for those of us who carry out research in the field of optics and other scientific fields, but also for the general public who use laser devices in their daily lives. CD, DVD and Blu-ray players, laser printers, barcode readers, and fibre-optic communication systems that connect to the worldwide web and Internet are just a few of the many examples of laser applications in our daily life. Lasers also have a range of important biomedical applications; for example they are used to correct myopia, treat certain tumors and even whiten teeth, not to mention the beauty clinics that continually bombard us with advertisements for laser depilation, which has become so popular nowadays. However, the laser is of great importance not only due to its numerous scientific and commercial applications or the fact that it is the essential tool in various state-of-the-art technologies but also because it was a key factor in the boom experienced by optics in the second half of the last century. Around 1950 optics was considered by many to be a scientific discipline with a great past but not much of a future. At that time, the most prestigious journals were full of scientific papers from other branches of physics. However, this situation changed dramatically thanks to the laser which led to a vigorous development of optics. It is indisputable that the laser triggered a spectacular reactivation in numerous areas of optics and gave rise to others such as optoelectronics, non-linear optics or optical communications.

Ten years ago, on the occasion of the celebration of the 50th anniversary of the laser’s invention, President Barack Obama sent a presidential message to the founding partners of LaserFest, a yearlong initiative created to celebrate the 50th anniversary of the first working laser, recognizing it as “one of the most important and versatile inventions of the 20th century.” In his message, President Obama recognized the “intensely creative theoretical work” that led to the development of the laser, “followed by innovative engineering and a spectacular diversity of applications that have brought economic benefits unimagined at the start of the process.” He went on to say he looks forward “with real excitement to further advances in this field and new applications as yet undreamed of today.”

What is a laser? 

It is a device capable of generating a light beam of a much greater intensity than that emitted by any other type of light source. Moreover it has the property of coherence, which ordinary light beams usually lack. The angular dispersion of a laser beam is also much smaller and so when a laser ray is emitted and dispersed by the surrounding dust particles it is seen as a narrow straight light beam. But let us leave to one side the specialized technical points, more suitable to other types of publications, and concentrate on aspects of the invention of the laser which are no less important and no doubt of greater interest to the general public. The word laser is actually an acronym for “Light Amplification by Stimulated Emission of Radiation” and was coined in 1957 by the American physicist Gordon Gould (1920-2005), working for the private company Technical Research Group (TGR), who changed the “M” of Maser for the “L” of Laser. In the image below, the phrase “some rough calculations on the feasibility of a LASER: Light Amplification by Stimulated Emission of Radiation” may be seen (Gordon Gould’s manuscript, 1957).

First page of Gordon Gould’s 1957 lab notebook where he defines the term ‘laser’. Credit: (AIP Emilio Segre Visual Archives.

The origins of the development of the laser may be found in a paper by Albert Einstein (1879-1955) on stimulated emission of radiation in 1916 («Strahlungs-emission und -absorption nach der Quantentheorie», Emission and absorption of radiation in Quantum Theory). But it was an article published on 15 December 1958 by two physicists, Charles Townes (1915-2015) and Arthur Schawlow (1921-1999) titled  “Infrared and Optical Masers” that laid the theoretical bases enabling Maiman to build the first laser at the Hughes Research Laboratories (HRL) in Malibu, California in 1960. Maiman used as the gain medium a synthetic ruby crystal rod  one centimeter long with mirrors on both ends and so created the first ever active optical resonator. It is probably not general knowledge that the Hughes Research Laboratories was a private research company founded in 1948 by Howard Hughes (1905-1976), eccentric multimillionaire, aviator, self-taught engineer, Hollywood producer and entrepreneur, played by Leonardo DiCaprio in the film “The Aviator” directed by Martin Scorsese in 2004.

The executives of the Hughes Research Laboratories gave Maiman a deadline of nine months, 50,000 dollars and an assistant to obtain the first laser emission. Maiman was going to use a movie projector lamp to optically excite the gain medium but it was his assistant, Irnee D’Haenes, who had the idea of illuminating the ruby crystal with a photographic flash.

Charles H. Townes (left) and Arthur Leonard Schwalow (right). Nobel Museum, Stockholm. Credit: Augusto Beléndez.

When he obtained the first laser emission, Maiman submitted a short article to the prestigious physics journal the Physical Review. However, it was rejected by the editors who said that the journal had a backlog of articles on masers –antecedent of the laser in the microwave region and so had decided not to accept any more articles on this topic since they did not merit prompt publication. Maiman then sent his article to the prestigious British journal, Nature, which is even more particular than the Physical Review. However it was accepted for publication and saw the light (excuse the pun) on 6 August 1960 in the section Letters to Nature under the title “Stimulated Optical Radiation in Ruby”, with Maiman as its sole author. This article which ran to barely 300 words and took up the space of just over a column may well be the shortest specialized article on such an important scientific development ever published. In a book published to celebrate the centenary of the journal Nature, Townes described Maiman’s article as “the most important per word of any of the wonderful papers” that this prestigious journal had published in its hundred years of existence. After Maiman’s article was officially accepted by Nature, the Hughes laboratories announced that the first working laser had been built in their company and called a press conference in Manhattan on 7 July 1960.

In a very short time the laser stopped being a simple curiosity and became an almost unending source of new scientific advances and technological developments of great significance. In fact the first commercial laser came on the market barely a year later in 1961. In the same year the first He-Ne lasers, probably the most well known and widely used lasers ever since, were commercialized. In these early years between 1960 and 1970 none of the researchers working on developing the laser –the majority in laboratories of private companies such as those of Hughes, IBM, General Electric or Bell- could have imagined to what extent lasers would transform not only science and technology but also our daily life over the subsequent 60 years.

On May 16, 2020, we  celebrate the 60th Anniversary of Maiman’s monumental accomplishment in conjunction with the International Day of Light.

He-Ne laser illuminating an optical set-up made using two holographic lenses in the old Optics laboratory placed at the University of Alicante. This university was one of the pioneer universities in Spain in the application of laser to research. / Augusto Beléndez, Variable holographic filter (1988).

“55th anniversary of the laser’s invention”: Published in IYL2015 BLOG (May 27th, 2015)

 

Posted in Divulgación, Noticias, Premios Nobel | Tagged , , , | Comments Off on The laser turns 62!