Tema 5. Termodinámica

En este tema se analizan conceptos fundamentales de esta rama de la Física como son los sistemas termodinámicos, variables y funciones de estado, tipos de transformaciones, etc., y se formulan el primer y segundo principios de la Termodinámica.

Además de calor, puede haber una transferencia de energía entre un sistema y su entorno mediante el trabajo, que no es otra cosa que la energía transferida entre un sistema y su entorno por métodos que no dependen de la diferencia de temperatura. Aunque la energía puede transferirse en forma de trabajo mediante distintos tipos de fuerzas (eléctricas, magnéticas, etc.), en este tema se tratará el trabajo mecánico realizado por las fuerzas que ejerce un sistema sobre su entorno y viceversa, considerando el caso particular del trabajo realizado por la fuerza de presión de un fluido al desplazar un émbolo.

Tras hacer una mención a las funciones y ecuaciones de estado se introduce el primer principio de la Termodinámica que señala que en todo proceso en que se cede calor al sistema y éste realiza un trabajo, la energía total transferida a dicho sistema es igual al cambio en su energía interna. Así pues, la variación de energía interna se introduce a partir del primer principio, y se relaciona con los conceptos de calor y trabajo. El primer principio no es sino una forma más de enunciar el principio de conservación de la energía y refleja los resultados de muchos experimentos que relacionan el trabajo realizado por o sobre un sistema, el calor que se ha añadido o substraído, y la propia energía interna del mismo. Un aspecto importante que hay que resaltar es el cálculo del trabajo y los diagramas pV para un gas, calculándose el trabajo para procesos cuasiestáticos isócoros, isóbaros e isotermos en el caso de un gas ideal.

A continuación se estudian las capacidades caloríficas y los calores específicos de los gases, tanto a volumen constante como a presión constante, y la relación de Mayer entre ambas, así como el proceso adiabático de un gas ideal.

Seguidamente se estudian las máquinas térmicas y el enunciado del segundo principio de la Termodinámica, así como el rendimiento de las máquinas térmicas y frigoríficas, para pasar seguidamente al estudio del ciclo de Carnot. Tanto desde una perspectiva práctica como teórica, el ciclo de Carnot tiene gran importancia, pues una máquina térmica que opere con este ciclo ideal reversible establece un límite superior para los rendimientos de todas las máquinas.

Finalmente se introduce el concepto de temperatura termodinámica así como el de entropía y se calculan variaciones de entropía en distintos procesos termodinámicos. El tema concluye con el estudio de la relación entre entropía, irreversibilidad y segundo principio de la Termodinámica, indicando que la entropía del Universo aumenta en todos los procesos reales.

Bibliografía

Young, H. D. y Freedman, R. A., Física Universitaria (Sears-Zemansky), Vol. I (Addison-Wesley, México, 2009). Cap. 18.

Beléndez, A., Acústica, fluidos y termodinámica (1992).

Tipler, P. A. y Mosca, G., Física para la Ciencia y la Tecnología, Vol. I (Reverté, Barcelona, 2005). Caps. 17 y 18.

Gettys, W. E., Keller, F. J. y Skove, M. J., Física Clásica y Moderna (McGraw-Hill, Madrid, 1991). Caps. 16.

Posted in Asignatura, Temas | Tagged , | Comments Off on Tema 5. Termodinámica

Tema 3 (Ampliación de Física): Geometría de masas

En muchos problemas relacionados con la estática y la dinámica del sólido rígido aparecen unas magnitudes denominadas centros de gravedad y momentos de inercia que están relacionadas con la forma en la que está la masa distribuida geométricamente en el espacio. Por esta razón, estas magnitudes se engloban en lo que se denomina geometría de masas.

Si consideramos el movimiento plano de un sólido rígido, éste tiene un tamaño y una forma definidos, por lo que un sistema de fuerzas no concurrentes puede hacer que el cuerpo se traslade y rote.

La traslación está regida por la segunda ley de Newton F = ma. Los aspectos de rotación provocados por un momento M están regidos por una ecuación de la forma M = Iα en la que α es la aceleración angular, mientras que I es el momento de inercia de masa. Por comparación, el momento de inercia mide la resistencia del cuerpo a la aceleración angular (M = Iα) del mismo modo que la masa mide la resistencia de un cuerpo a la aceleración (F = ma).

En este tema se verán los métodos utilizados para determinar la posición del centro de gravedad así como el momento de inercia de un cuerpo.

Posted in Asignatura | Tagged , , , | Comments Off on Tema 3 (Ampliación de Física): Geometría de masas

Tema 4. Calor y temperatura

La Termodinámica es la parte de la Física que se dedica al estudio de las transformaciones de energía donde intervienen calor, trabajo mecánico y otros aspectos de la energía, así como la relación que existe entre transformaciones y las propiedades de la materia. El tema comienza introduciendo el concepto de temperatura y de equilibrio térmico, junto con el principio cero de la Termodinámica, los termómetros y las escalas de temperatura, así como el termómetro de gas a volumen constante. El calor es la energía transferida entre un sistema y su entorno (o alrededores), debida únicamente a una diferencia de temperatura entre dicho sistema y alguna parte de su entorno. Así pues, siempre que en un sistema existe una diferencia de temperaturas se produce un flujo de calor desde la región más caliente a la más fría, hasta que las temperaturas se igualan.

Después de estudiar la dilatación térmica se presenta la ecuación de los gases ideales y se realizan algunos problemas sobre gases. El gas ideal es un modelo idealizado que funciona mejor a presiones muy bajas y altas temperaturas, cuando las moléculas del gas están muy separadas y en rápido movimiento.

Seguidamente se estudia la capacidad calorífica y el calor específico. La capacidad calorífica de una sustancia que se define como la energía térmica que se necesita para aumentar un grado la temperatura de la sustancia.

En el estudio de los cambios de fase se introduce el concepto de calor latente de fusión y de vaporización. Una cuestión importante que hay que puntualizar es que la temperatura permanece constante durante un cambio de fase, como la fusión del hielo o la ebullición del agua.

Esquema de transmisión de calor por conducción. Fuente: Wikipedia.

Finalmente se analizan los fenómenos de transmisión del calor sobre todo por conducción, por su interés en ingeniería. Es evidente que este fenómeno es de gran interés en la construcción a la hora de plantear, por ejemplo, el aislamiento térmico de las viviendas. Es costumbre clasificar los distintos procesos de transmisión del calor en tres modos o mecanismos básicos, si bien es cierto que con frecuencia aparecen simultáneamente. En la transmisión del calor por conducción, el flujo de calor tiene lugar por la transmisión de la energía térmica desde las moléculas de mayor energía cinética de traslación (mayor temperatura) a las de menor energía cinética (menor temperatura) sin que se produzca transporte de masa. En primer lugar se estudia la Ley de Fourier, analizando diversos problemas de conductividad en régimen estacionario como el caso del muro, tanto simple como compuesto, la esfera y el cilindro. A continuación se introducen los procesos de transmisión del calor por convección y radiación, sin entrar en mucho detalles. La convección es un proceso que tiene lugar en un líquido o un gas a consecuencia de movimiento real de las partículas calentadas en su seno. La radiación térmica es emitida por todos los cuerpos como resultado de su temperatura. Esta radiación se emite en todas direcciones, se propaga a la velocidad de la luz y cuando “choca” contra otro cuerpo puede ser reflejada, transmitida o absorbida por éste.

Bibliografía

Young, H. D. y Freedman, R. A., Física Universitaria (Sears-Zemansky), Vol. I (Addison-Wesley, México, 2009). Caps. 17 y 18.

Beléndez, A., Acústica, fluidos y termodinámica (1992).

Tipler, P. A. y Mosca, G., Física para la Ciencia y la Tecnología, Vol. I (Reverté, Barcelona, 2005). Caps. 17 y 18.

Gettys, W. E., Keller, F. J. y Skove, M. J., Física Clásica y Moderna (McGraw-Hill, Madrid, 1991). Caps. 16.

Posted in Asignatura, Temas | Tagged , | Comments Off on Tema 4. Calor y temperatura

Tema 3. Trabajo y energía

En este tema se tratan dos de los conceptos más importantes de la Física, “trabajo” y “energía”, y que irán apareciendo en todos los temas del programa de la asignatura La importancia del concepto de energía surge de la ley de conservación de la energía: la energía es una cantidad que se puede convertir de un tipo de energía a otro, pero no puede crearse ni destruirse.

En primer se define el trabajo realizado por una fuerza, tanto en el caso en el que la fuerza es constante y el movimiento rectilíneo como en el caso general de fuerza variable y movimiento curvilíneo general. Otro concepto importante es la potencia, que no es otra cosa que la rapidez con la que se realiza trabajo. El concepto de trabajo permite, a su vez, definir la energía cinética y obtener el teorema de la energía cinética que indica que el trabajo efectuado por la fuerza neta sobre una partícula es igual al cambio de la energía cinética de la partícula. Es importante señalar que la energía cinética es la energía que tiene un objeto debido a su movimiento y que al estar moviéndose es capaz de producir un trabajo modificando su energía cinética.

A continuación se estudian las fuerzas conservativas y no conservativas y se introduce la energía potencial, que no está asociada al movimiento de una partícula sino, como en el caso de una fuerza gravitatoria, está asociada con la posición de la partícula en el campo gravitatorio. Otro ejemplo de energía potencial de interés es la energía potencial elástica. Para el caso de fuerzas conservativas se introduce el principio de conservación de la energía mecánica, que es una de las leyes fundamentales de la naturaleza. Es importante señalar que cuando un sistema realiza trabajo sobre otro, se transfiere energía entre los dos sistemas, que existen muchas formas de energía y que si la energía de un sistema se conserva, su energía total no cambia aunque parte de ella puede que cambie de forma o naturaleza, pasando de un tipo a otro. La generalización de la ley de conservación de la energía cuando sobre el sistema actúa también fuerzas no conservativas -para las que no existe una energía potencial- es inmediata.

Resulta importante indicar que una forma de transferir energía (absorbida o cedida) de un sistema es intercambiar trabajo con el exterior. Si está es la única fuente de energía transferida (la energía también puede transferirse también cuando hay un intercambio de calor entre un sistema y sus alrededores debido a una diferencia de temperatura, como se verá en el tema “Calor y temperatura”), la ley de conservación de la energía se expresa diciendo que el trabajo realizado sobre el sistema por las fuerzas externas es igual a la variación experimentada por la energía total del sistema. Éste es el teorema trabajo-energía y es un instrumento poderoso para estudiar una amplia variedad de sistemas.

El último apartado del tema finaliza se centra el estudio de los choques, tanto elásticos como inelásticos.

Bibliografía

Alonso, M. y Finn, E. J., Física (Addison-Wesley Iberoamericana, Wilmington, 1995). Cap. 9.

Young, H. D. y Freedman, R. A., Física Universitaria (Sears-Zemansky), Vol. I (Addison-Wesley, México, 2009). Caps. 6, 7 y 8.

Beléndez, A., Bernabeu, J. G. y Pastor, C., Temas de Física para Ingeniería: Trabajo y energía (1988).  http://hdl.handle.net/10045/11344

Tipler, P. A. y Mosca, G., Física para la Ciencia y la Tecnología, Vol. I (Reverté, Barcelona, 2005). Caps. 6 y 7.

Gettys, W. E., Keller, F. J. y Skove, M. J., Física Clásica y Moderna (McGraw-Hill, Madrid, 1991). Caps. 8 y 9.

González, C. F., Fundamentos de Mecánica (Reverté, Barcelona, 2009). Cap. 5.

Posted in Asignatura, Temas | Tagged , | Comments Off on Tema 3. Trabajo y energía

Tema 2 (Ampliación de Física): Cinemática tridimensional del sólido rígido

El movimiento tridimensional de un sólido rígido es mucho más complejo que el movimiento plano. Los puntos del cuerpo se desplazan en el espacio tridimensional y además las direcciones de los vectores velocidad angular y aceleración angular varían con el tiempo. Recordemos que en movimiento plano de un sólido rígido las direcciones de los vectores y no cambian, manteniéndose siempre perpendiculares al plano del movimiento.

En este caso el tratamiento vectorial no sólo es útil, sino estrictamente necesario para el estudio del movimiento tridimensional de un sólido rígido.

Antes de analizar el movimiento tridimensional de un sólido rígido o bien el caso particular de su rotación en torno a un punto fijo, vamos a considerar algunos aspectos de las rotaciones de cuerpos rígidos en tres dimensiones. De este modo nos familiarizaremos con algunas propiedades de los desplazamientos rotacionales.

En el caso de la rotación en torno a un punto fijo, cada punto del sólido se mueve en una superficie esférica centrada en ese punto.

Posted in Asignatura, Temas | Tagged , , , | Comments Off on Tema 2 (Ampliación de Física): Cinemática tridimensional del sólido rígido