Tema 2. Dinámica

En este tema se estudia la Dinámica, es decir, la parte de la Mecánica que analiza las relaciones entre el movimiento y las causas que lo producen, es decir, las fuerzas. En Física, las causas de las interacciones entre los cuerpos, estén o no en contacto, sean próximos o lejanos, se describen mediante fuerzas. El tema comienza con una breve descripción de distintos tipos de fuerzas (de contacto, de rozamiento, normal, de tensión, de largo alcance, etc.) y de las fuerzas fundamentales de la Naturaleza (interacciones gravitatoria, electromagnética, fuerte y débil).

Seguidamente se presentan las tres leyes de Newton, que están establecidas en términos de la fuerza y la masa. Estas leyes son la ley de la inercia, la ecuación fundamental de la dinámica y el principio de acción y reacción. Un aspecto importante que hay que tener en cuenta es que el concepto de sistema de referencia inercial es fundamental para las leyes del movimiento de Newton. La segunda ley de Newton, que relaciona fuerza, masa y aceleración, es una ley fundamental de la Naturaleza, la relación básica entre fuerza y movimiento y, al igual que la primera ley, sólo es válida para sistemas de referencia inerciales. En cuanto a la tercera ley de Newton, es importante comprender que las fuerzas de acción y reacción están aplicadas a cuerpos diferentes, por lo que aunque son iguales y opuestas, no se equilibran.

Como ejemplo de fuerza de gran interés se estudia la fuerza gravitatoria -una de las fuerzas fundamentales de la Naturaleza-, la ley de la gravitación universal y el ejemplo más conocido de atracción gravitacional, el peso, es decir, la fuerza con que la Tierra atrae a un objeto.

Un apartado de gran importancia en este tema es la aplicación de las leyes de Newton a la resolución de problemas de Dinámica. Se analizan problemas con poleas, planos inclinados, tensiones y cuerdas, rozamiento, curvas peraltadas, etc., dejando claro el procedimiento general de cómo deben resolverse estos problemas. Es importante analizar ejemplos en los que la magnitud de la fuerza normal ejercida sobre un cuerpo no siempre es igual a su peso. En todos los casos es necesario, examinar con precisión las relaciones entre las fuerzas y el movimiento producido. En la resolución de problemas es indispensable dibujar correctamente el diagrama de cuerpo libre en el que se muestra el cuerpo en estudio solo, libre de su entorno, con los vectores correspondientes a todas las fuerzas que actúan sobre el cuerpo.

El tema finaliza con el estudio de dos conceptos de gran importancia en Física, como son los momentos lineal y angular así como sus leyes de conservación. Es necesario comprender que la segunda ley de Newton también puede expresarse en términos del momento lineal, de hecho, la fuerza neta que actúa sobre una partícula es igual ala rapidez de cambio de su momento lineal. Esta expresión de la segunda ley de Newton que relaciona la fuerza neta aplicada sobre un cuerpo y su momento lineal es la que hay que utilizar cuando se analizan, por ejemplo, los sistemas de masa variable.

Bibliografía

Alonso, M. y Finn, E. J., Física (Addison-Wesley Iberoamericana, Wilmington, 1995). Caps. 6 y 7.

Beléndez, A., Bernabeu, J. G. y Pastor, C., Temas de Física para Ingeniería: Dinámica del punto material (1988).  http://hdl.handle.net/10045/11343

Tipler, P. A. y Mosca, G., Física para la Ciencia y la Tecnología, Vol. I (Reverté, Barcelona, 2005). Caps. 4 y 5.

Young, H. D. y Freedman, R. A., Física Universitaria (Sears-Zemansky), Vol. I (Pearson Educación, México, 2009). Caps. 4 y 5.

Gettys, W. E., Keller, F. J. y Skove, M. J., Física para Ciencias e Ingeniería, Vol. I (McGraw-Hill, Madrid, 2005). Caps. 5 y 6.

González, C. F., Fundamentos de Mecánica (Reverté, Barcelona, 2009). Cap. 3.

Posted in Asignatura, Temas | Tagged , | Comments Off on Tema 2. Dinámica

Tema 1 (Ampliación de Física): Cinemática plana del sólido rígido

En este tema veremos la cinemática plana de un sólido rígido. Primero definimos un solido rígido como aquel cuerpo en el que la separación entre dos puntos cualesquiera es fija e independiente del tiempo. Si las distancias entre dos puntos cualesquiera son fijas, también lo serán los ángulos determinados por toda tripleta de puntos A, B y C.

En la cinemática de la partícula, para describir completamente el movimiento, basta con conocer en cada instante su situación, es decir, las coordenadas del unto donde se encuentra la partícula. Sin embargo, en la cinemática del sólido rígido, la descripción completa de su movimiento exige que se den la posición y la orientación del cuerpo. Es este caso intervienen magnitudes lineales como angulares.

Existen cinco tipos generales de movimiento de un sólido rígido: traslación, rotación alrededor de un eje fijo, movimiento plano general, rotación en torno a un punto fijo y movimiento general.

(a) Traslación: La orientación de todo segmento rectilíneo del sólido rígido se mantiene constante durante el movimiento. Todos los puntos del cuerpo rígido se mueven a lo largo de trayectorias paralelas. Si estas trayectorias son líneas rectas es una traslación rectilínea; si son líneas cuervas, una traslación curvilínea (Figura 2).

(b) Rotación alrededor de un eje fijo: Los puntos del sólido se mueven en planos paralelos a lo largo de círculos centrados sobre el mismo eje fijo. Si este eje, llamado eje de rotación, intersecta al cuerpo, los puntos de dicho eje tienen velocidad cero y aceleración cero.

(c) Movimiento plano general: En un movimiento plano cada punto del sólido permanece en un plano. Como ejemplos se pueden mencionar la traslación coplanaria y la rotación en torno a un eje fijo. Los demás tipos de movimientos planos se denominan movimiento plano general.

(d) Rotación en torno a un punto fijo: Se trata de un movimiento tridimensional en el que un punto de sólido permanece fijo.

(e) Movimiento general: Cualquier movimiento del sólido rígido que no entra en las categorías anteriores se denomina movimiento general.

Posted in Asignatura, Temas | Tagged , , , | Comments Off on Tema 1 (Ampliación de Física): Cinemática plana del sólido rígido

Tema 1. Cinemática

La Mecánica estudia el movimiento y su relación con las causas que lo producen. La Mecánica es la más antigua rama de la Física y, sin lugar a dudas, es también la más elaborada. Sus modelos han sido aplicados a otros campos, incluso fuera de la Física, de ahí su interés como fundamento para entender otras parcelas científicas y técnicas.

Primeramente es conveniente describir el movimiento, sin considerar las causas del mismo, a lo que se dedica la parte de la Mecánica conocida como Cinemática. A este estudio se dedica este tema, considerando el caso de la cinemática de la partícula o punto material, es decir, un cuerpo cuyo tamaño y forma no tienen importancia en la resolución de un problema mecánico determinado.

En este tema se repasan conceptos como el vector de posición, el vector desplazamiento y la velocidad y aceleraciones medias e instantáneas. Un aspecto importante a tener en cuenta es que el vector velocidad es un vector tangente a la trayectoria de la partícula en cada punto. Se analizan las componentes intrínsecas de la aceleración: aceleración tangencial y aceleración normal o centrípeta. La aceleración tangencial tiene en cuenta la variación del módulo del vector velocidad con el tiempo, mientras que la aceleración normal expresa la variación de la dirección del vector velocidad con el tiempo. La aceleración normal está dirigida hacia el centro de curvatura de la trayectoria en cada punto y es inversamente proporcional al radio de curvatura de esta trayectoria. Obviamente, para un movimiento rectilíneo no hay aceleración normal y para uno circular el radio de curvatura de la trayectoria es constante.

Seguidamente se estudia el movimiento rectilíneo y algunos casos particulares  como el movimiento rectilíneo uniforme en el que la aceleración es nula y la velocidad constante y el movimiento rectilíneo uniformemente acelerado, caracterizado porque la aceleración es constante. Otro tipo de movimiento de interés que también se estudia en este tema es el movimiento circular en el que se analizan los conceptos de velocidad y aceleración angulares y su relación con la velocidad y aceleración lineales. Como ejemplos se estudian el movimiento circular uniforme y el movimiento circular uniformemente acelerado. Una cuestión importante a tener en cuenta son las relaciones vectoriales entre la velocidad angular, la velocidad lineal, la aceleración angular y la aceleración lineal.

El tema finaliza con el estudio del movimiento parabólico, como es el movimiento de un proyectil, el cual permite ver cómo, para su análisis, se puede descomponer un movimiento, en este caso en dos dimensiones, como la superposición de dos movimientos unidimensionales independientes en dos direcciones perpendiculares. Cuestiones como el alcance y la altura máxima también son analizadas.

Es importante tener en cuenta en todo el desarrollo del tema que el movimiento es un concepto relativo y debe por tanto referirse siempre a un sistema particular de referencia, elegido por el observador.

Bibliografía

Alonso, M. y Finn, E. J., Física (Addison-Wesley Iberoamericana, Wilmington, 1995).  Caps. 3, 4 y 5.

Beléndez, A., Bernabeu, J. G. y Pastor, C., Temas de Física para Ingeniería: Cinemática del punto material (1988). http://hdl.handle.net/10045/11342

Tipler, P.  A. y Mosca, G., Física para la Ciencia y la Tecnología,  Vol. I (Reverté, Barcelona, 2005). Caps. 2 y 3.

Young, H. D. y Freedman, R. A., Física Universitaria (Sears – Zemansky),  Vol. I (Pearson Educación, México, 2009). Caps. 2 y 3.

Gettys, W. E., Keller, F. J. y Skove, M. J.,  Física para Ciencias e Ingeniería, Vol. I (McGraw-Hill, Madrid, 2005). Caps. 3 y 4.

Posted in Asignatura, Temas | Tagged , | Comments Off on Tema 1. Cinemática

Comienza la asignatura “Ampliación de Física” del Grado en Ingeniería Robótica de la UA

Contenidos para el curso 2023-24

Tema 1. Cinemática plana del sólido rígido

  • Introducción
  • Traslación. Movimiento plano. Rotación alrededor de un eje fijo
  • Movimiento plano general. Velocidades absoluta y relativa
  • Centro instantáneo de rotación en el movimiento plano
  • Aceleraciones absoluta y relativa en el movimiento plano
  • Movimiento plano relativo a ejes en rotación. Aceleración de Coriolis

Tema 2. Cinemática tridimensional del sólido rígido

  • Introducción
  • Teorema de Euler. Rotaciones finitas e infinitesimales
  • Rotación en torno a un punto fijo
  • Movimiento general de un sólido rígido en el espacio
  • Eje instantáneo de rotación y mínimo deslizamiento
  • Movimiento tridimensional relativo a ejes en rotación
  • Derivada respecto al tiempo de un vector con respecto a un sistema fijo o a un sistema trasladante-rotatorio

Tema 3. Geometría de masas

  • Introducción
  • Centro de masas, centro de gravedad y centroide
  • Momento de inercia
  • Radio de giro
  • Teoremas de Steiner para momentos de inercia
  • Productos de inercia
  • Momentos principales de inercia
  • Momentos de inercia de superficies planas

Tema 4. Estática del sólido rígido

  • Introducción
  • Condiciones de equilibrio
  • Reacciones de enlace
  • Resolución de problemas. Diagrama del sólido libre
  • Fuerzas interiores en miembros estructurales

Tema 5. Dinámica plana del sólido rígido

  • Introducción
  • Ecuaciones del movimiento plano de un sólido rígido
  • Traslación, rotación y movimiento plano general de un sólido rígido
  • Trabajo de fuerzas y pares que se ejercen sobre un sólido rígido
  • Energía cinética de un sólido rígido en movimiento plano
  • Conservación de la energía
  • Momento angular de un sólido rígido en movimiento plano

Tema 6. Dinámica tridimensional del sólido rígido

  • Introducción
  • Movimiento tridimensional de un sólido rígido. Ecuaciones de Euler
  • Momento angular en el movimiento tridimensional
  • Principio del impulso y cantidad de movimiento
  • Energía cinética de un sólido rígido en tres dimensiones
  • Conservación de la energía
  • Movimiento de un giróscopo
  • Movimiento sin par de torsión

Tema 7. Vibraciones mecánicas

  • Introducción
  • Vibraciones libres no amortiguadas
  • Vibraciones libres amortiguadas
  • Vibraciones forzadas
Posted in Asignatura, Materiales docentes, Temas | Tagged , , , | Comments Off on Comienza la asignatura “Ampliación de Física” del Grado en Ingeniería Robótica de la UA

Comienza la asignatura “Electromagnetismo II” del Grado en Física de la UA

Contenidos para el curso 2023-24

Tema 1.-  CIRCUITOS DE CORRIENTE ALTERNA

  • Introducción
  • Elementos básicos de una red
  • Circuitos en régimen alterno
  • Potencia en régimen alterno
  • Resonancia
  • Leyes de Kirchhoff
  • Método de las corrientes de malla
  • Teoremas relativos a circuitos

Tema 2.-  ECUACIONES DE MAXWELL Y LEYES DE CONSERVACIÓN

  • Introducción
  • Corriente de desplazamiento. Ley de Ampère-Maxwell
  • Ecuaciones de Maxwell en el espacio libre y en medios materiales
  • Condiciones de contorno
  • Ecuación de continuidad
  • Energía electromagnética. Vector de Poynting
  • Momento lineal del campo electromagnético
  • Momento angular del campo electromagnético
  • Sistemas de unidades

Tema 3.-  ONDAS ELECTROMAGNÉTICAS

  • Introducción
  • Ecuación de ondas para los campos
  • Ondas electromagnéticas en el espacio libre
  • Energía y momento lineal de una onda electromagnética
  • Ondas electromagnéticas en dieléctricos
  • Ondas electromagnéticas en conductores
  • Medios dispersivos: velocidad de grupo y velocidad de fase
  • Ondas guiadas

Tema 4.-  DINÁMICA DE PARTÍCULAS RELATIVISTAS EN CAMPOS ELECTROMAGNÉTICOS

  • Introducción
  • Cinemática y dinámica relativistas
  • Tetrapotencial campo. Función de Lagrange
  • Ecuaciones de movimiento en forma covariante. Tensor campo electromagnético
  • Fuerza de Lorentz. Expresión covariante de la fuerza
  • Invariancia gauge
  • Formulación lagrangiana no covariante
  • Transformaciones de los campos
  • Invariantes del campo electromagnético
  • Campo creado por una carga móvil: ley de Biot-Savart

Tema 5.-  LAS ECUACIONES DE MAXWELL EN EL ESPACIO LIBRE

  • Introducción
  • Contenido físico de las ecuaciones de Maxwell (I)
  • Conservación de la carga y tetravector corriente
  • Ecuaciones de Maxwell en forma covariante
  • Ecuaciones de onda para los potenciales: gauges
  • Contenido físico de las ecuaciones de Maxwell (II)

Tema 6.-  SOLUCIÓN GENERAL DE LAS ECUACIONES DE MAXWELL

  • Introducción
  • Ondas esféricas asociadas a una carga puntual en el origen. Potenciales retardados
  • Expresión general para los potenciales retardados
  • Comparación con el caso estático: resultados con validez general y parcial
  • Potenciales para una carga móvil: solución de Liénard-Wiechert
  • Campos creados por una carga en movimiento arbitrario: campo próximo y campo de radiación

Tema 7.-  TEORÍA DE LA RADIACIÓN

  • Introducción
  • Radiación por una carga acelerada en la aproximación no-relativista de Larmor: aproximación dipolar
  • Radiación de un dipolo eléctrico
  • Radiación de un dipolo magnético
  • Radiación por una carga acelerada en el caso general
  • Acelerador lineal y acelerador circular. Radiación de sincrotrón
  • Reacción de radiación. Ecuación de Abraham-Lorentz

Tema 8.-  FORMULACIÓN LAGRANGIANA DEL CAMPO ELECTROMAGNÉTICO

  • Introducción
  • Formulación lagrangiana de un sistema discreto
  • Transición de un sistema discreto a un sistema continuo
  • Formulación lagrangiana de un campo
  • Lagrangiano para el campo electromagnético y formulación covariante de las ecuaciones de Maxwell
  • Tensor energía-impulso
  • Simetrización del tensor energía-impulso. Teorema de Poynting
  • Campo electromagnético con partículas. Leyes de conservación
  • Invariancia gauge y conservación de la carga
Posted in Enseñanza/aprendizaje, Materiales docentes | Tagged , , , | Comments Off on Comienza la asignatura “Electromagnetismo II” del Grado en Física de la UA