Home » Posts tagged 'sediment compactation'

Tag Archives: sediment compactation

Compactation in sedimentary basins

Subsidence analysis is an important technique in the study of sedimentary basins but the effects of compaction must be “backstripped”. The compaction of sediments is also of importance for petroleum and water reservoir research with very important economic derivations. Most methods for calculating compaction are based on empirically derived porosity-depth relationships from a variety of known sediment types. The challenge of this paper is to apply alternative methods for calculating compaction in sedimentary basins based on: physical calculation with elastic by Steinbrenner, oedometric and change of the specific weight of the sediment methods; and use of Loadcap software.

The Triassic to Lower Miocene 3025m thick succession of Sierra Espuña (SE Spain) is used as case study for the calculations. In this succession former mineralogical studies and apatite fission-track suggested an original thickness between 4 and 6km. The validity of each one of the proposed methods is discussed, as well as, compared for the whole succession compaction but also separately for hard vs soft sediments and for thick vs thin beds.

Accumulate thickness-age (My) graphic with the comparative of the measured thickness and the results of original accumulate thickness along time of the studied succession after decompaction with the whole methods. The mean thickness with the whole methods is also represented with dash line. Key: ESM: elastic by Steinbrenner; SWM: specific weight of the sediment methods; OM: oedometric method; PCM: porosity change method (Bond et al., 1983); LSM: use of Loadcap software method.

The compaction values obtained with the alternative methods are similar to those resulting with the lower-limit curves of the porosity-depth change method. The new methods have provided values slightly higher than 4km for the whole original thickness using the geotechnical software and the change of the sediments specific weigh methods; meanwhile values below 4km for other methods. So, in our opinion, the geotechnical software and the change of the specific weight of the sediment methods are compatible with mineralogical constraints and also, the input data are usually better known and easier to determinate. Otherwise, the elastic method seems only accurate for soft sediments; meanwhile the oedometric method is highly influenced by the thickness of the considered beds.


Cite as: Martín-Martín, M., and Robles-Marín, P. (2020): Alternative methods for calculating compaction in sedimentary basins. Mar. Pet. Geol. 113, 104132. doi: 10.1016/j.marpetgeo.2019.104132