TEMA 3. Centres de gravetat de superfícies planes

Una situació freqüent en la pràctica arquitectònica és l’actuació de sistemes de forces pes que actuen sobre un element estructural distribuïdes discretament o en forma contínua. Aquest és un cas particular de sistema de vectors lliscants paral·lels que es pot reduir a una resultant aplicada en el centre del sistema. El centre del sistema de forces pes l’anomenarem centre de gravetat G.

Per tant, en aquest capítol s’aprendrà a calcular centres de gravetat de cossos lineals, bidimensionals i tridimensionals. Com a cas particular, s’aprendrà a calcular centres de gravetat de superfícies complexes.

Finalment, coneixerem i utilitzarem els teoremes de Pappos-Guldin que relacionen el centre de gravetat d’una línia o una superfície amb la superfície lateral o el volum del cos de revolució que generen en girar al voltant d’un eix donat.

En el laboratori de física es posarà en pràctica els coneixements teòrics d’aquest capítol per tal de calcular per dos mètodes diferents el centre de gravetat d’una superfície plana amb una forma irregular.

Un document amb un resum del bloc temàtic de geometria de masses es pot descarregar des de l’adreça electrònica del Repositori Institucional de la Universitat d’Alacant: http://rua.ua.es/dspace/handle/10045/19107. Podeu consultar la presentació corresponent a la sessió de teoria de centres de gravetat en l’adreça electrònica http://hdl.handle.net/10045/20716.

Bibliografia

Rodes Roca, J. J., Durá Doménech, A. i Vera Guarinos, J., Fonaments físics de les construccions arquitectòniques (Publicacions de la Universitat d’Alacant, Alacant, 2011). Capítol 4.

Rodes Roca, J. J., Exercicis i problemes dels fonaments físics d’arquitectura. I. Vectors lliscants i geometria de masses (ECU, Alacant, 2009)

Tipler, P. A. i Mosca, G., Física per a la ciència i la tecnologia, Volum 1 (Reverté, Barcelona, 2010). Capítols 1 i 12.

Deixa un comentari

L'adreça electrònica no es publicarà Els camps necessaris estan marcats amb *