Categories
Assignatura Materials docents Objectius

Pràctica 1. Mesures de longituds/Práctica 1. Medidas de longitudes

Les pràctiques de laboratori són fonamentals per entendre molts fenòmens físics, tractament de dades experimentals i presentació de treballs tècnics. En aquesta primera pràctica s’explica un instrument per a mesurar longituds i els seus errors. Com a exercici es tracta de deduir el valor del volum d’un cilindre a partir de les longituds que es mesuren amb el peu de rei en aquest vídeo.

Las prácticas de laboratorio son fundamentales para entender muchos fenómenos físicos, tratamiento de datos experimentales y presentación de trabajos técnicos. En esta primera práctica se explica un instrumento para medir longitudes y sus errores. Como ejercicio se trata de deducir el volumen de un cilindro a partir de las longitudes que se miden con el pie de rey en el siguiente vídeo.

[kml_flashembed movie="http://www.youtube.com/v/Htuc2Py1vVc" width="396" height="297" wmode="transparent" /]

El micròmetre, també anomenat cargol de Palmer, és un aparell que serveix per a mesurar amb precisió dimensions de l’ordre de centèsimes de mil·límetre. L’instrument es basa en un cargol de pas constant roscat interiorment que en anar girant desplaça un tambor graduat on indica la distància recorreguda linealment pel cargol. El vídeo següent explica el seu funcionament i un exemple de com s’utilitza per a mesurar longituds.

El Palmer es un instrumento que sirve para medir con precisión dimensiones del orden de centésimas de milímetro. El instrumento consta de un tornillo micrométrico de paso constante enroscado interiormente que gira sobre una escala graduada de un collar micrométrico (tambor) donde se indica la distancia recorrida linealmente por el tornillo. El siguiente vídeo explica su funcionamiento y un ejemplo de como se utiliza para medir longitudes.

[kml_flashembed movie="http://www.youtube.com/v/2986xttTaRc" width="396" height="297" wmode="transparent" /]

Categories
Assignatura Objectius Temes

Tema 1. Principis de la mecànica general

La mecànica és la branca de la física que estudia el moviment i la seua relació amb les causes que l’originen. La cinemàtica és la branca de la mecànica que estudia les característiques del moviment sense considerar les causes que l’originen (és a dir, les forces). La dinàmica és la branca de la mecànica que estudia la relació del moviment amb la força i la massa.

En aquest tema posarem les bases per a entendre el concepte d’equilibri estàtic com a un cas particular de la dinàmica. És molt important per a l’edificació l’estudi de les forces i els moments necessaris perquè els cossos molt amples romanguen estàtics. Per exemple, els cables que suporten un pont han de tindre la resistència adequada, les grues que aixequen un pes han de dissenyar-se perquè no es tomben, etc. Les causes de les interaccions entre els cossos es descriuen mitjançant forces.

Les lleis de Newton relaciones les forces que els cossos exerceixen entre ells, i també relacionen els canvis en el moviment d’un objecte amb les forces que hi actuen. Aquestes lleis són: la llei d’inèrcia, l’equació fonamental de la dinàmica i el principi d’acció i reacció. Cal assenyalar que el concepte de sistema de referència inercial és fonamental per a les lleis del moviment de Newton. Tant la primera com la segona llei de Newton són vàlides únicament en els sistemes de referència inercials. Per a la tercera llei de Newton cal entendre que les forces d’acció i reacció actuen sobre cossos diferents i, encara que són iguals i oposades, no s’equilibren. El pes, com a exemple de força de gran interés de l’enginyeria, és la força amb què la Terra atrau a un objecte.

L’aplicació de les lleis de Newton a la resolució de problemes d’estàtica és molt important, així com dibuixar correctament les forces que actuen sobre un cos (és a dir, el diagrama de sòlid lliure). Donat el caràcter vectorial de la força, aquest tema també revisa les operacions vectorials i les seues propietats i els conceptes de magnituds i unitats en física. S’acaba amb una breu descripció del tractament d’errors i xifres significatives.

Un document amb un resum del bloc temàtic de vectors lliscants es pot descarregar des de l’adreça electrònica del Repositori Institucional de la Universitat d’Alacant: http://rua.ua.es/dspace/handle/10045/19106. Una versió en castellà d’aquest bloc la podeu trobar ací i ací.

Els vídeos que descriuen les lleis de Newton i explica el significat de l’equació fonamental de la dinàmica, F = m·a, es troben en la següent adreça electrònica (són 26 vídeos en castellà corresponents a l’Univers Mecànic desenvolupats per l’Institut Tecnològic de Califòrnia (Caltech) explicats pel professor David L. Goodstein)

L’Univers Mecànic: Mecànica Clàssica

La presentació del curs i una revisió històrica de la Mecànica la podeu veure en el vídeo de l’adreça següent.

Bibliografia

Rodes Roca, J. J., Durá Doménech, A. i Vera Guarinos, J., Fonaments físics de les construccions arquitectòniques (Publicacions de la Universitat d’Alacant, Alacant, 2011). Capítols 1 i 2.

Rodes Roca, J. J., Exercicis i problemes dels fonaments físics d’arquitectura. I. Vectors lliscants i geometria de masses (ECU, Alacant, 2009)

Tipler, P. A. i Mosca, G., Física per a la ciència i la tecnologia, Volum 1 (Reverté, Barcelona, 2010). Capítols 1, 4 i 12.

Categories
Assignatura Objectius Temes

Tema 11. Bigues isostàtiques

Tot element sustentant que servisca per a uns fins pràctics cal que es dimensione i es construïsca de manera que quede assegurada la seua capacitat resistent, amb prou grau de seguretat per a totes les sol·licitacions que entren en consideració. Això és aplicable tant a un edifici com a un pont, a una grua, a una coberta, a un vehicle o a qualsevol altre tipus de màquina o construcció. En tots els casos, l’arquitecte o l’enginyer hauran d’aportar en el seu projecte les garanties suficients que en qualsevol punt de cadascun dels elements constructius hi ha el grau de seguretat que cal, no tan sols d’acord amb les normes respectives, sinó també pel que fa als límits dels materials davant les sol·licitacions previstes.

Per tot això, fa falta estudiar de quina manera es transmet a través dels elements estructurals el conjunt de forces exteriors (forces aplicades més reaccions en els suports). Denominarem biga tot element constructiu individual que permeta la transmissió de les forces exteriors en l’interior de qualsevol construcció tècnica. Es tracta de cossos allargats en els quals predomina una de les dimensions sobre les altres. La missió principal de les bigues és treballar a flexió i absorbir forces perpendiculars a la seua directriu.

Per tant, en aquest capítol s’entendrà el funcionament d’una biga, es calcularan les forces internes que hi actuen i es determinaran les lleis d’esforços tallants i moments flectors, així com dibuixar-les gràficament. Se suposarà que el sistema de forces que actuen sobre el sòlid, siga discret o siga continu, està contingut en el pla de simetria d’aquest. També s’aprendrà a distingir les bigues isostàtiques de les hiperestàtiques d’acord al seu grau d’hiperestatisme. L’objectiu fonamental és la resolució d’una biga, és a dir, obtenir les reaccions en els seus suports i els esforços tallants i moments flectors interns d’aquesta. En aquest estudi caldrà saber les hipòtesis simplificadores utilitzades en la resolució i els mètodes de resolució tant gràfics com analítics (mètode de les seccions o general).

Un document amb un resum del contingut teòric d’elasticitat i esforços en elements estructurals es pot descarregar des de l’adreça electrònica del Repositori Institucional de la Universitat d’Alacant: http://rua.ua.es/dspace/handle/10045/22316. Podeu consultar la presentació corresponent a la sessió de teoria de bigues isostàtiques en l’adreça electrònica http://hdl.handle.net/10045/22396.

El professorat de la Universitat Politècnica de València disposa de vídeos que expliquen conceptes teòrics relacionats amb les bigues isostàtiques. A continuació podeu veure un que explica com es calculen els esforços interns en bigues sotmeses a càrregues puntuals (en castellà).

[kml_flashembed movie="http://www.youtube.com/v/ySug3LIBmEM" width="398" height="224" wmode="transparent" /]

Bibliografia

Rodes Roca, J. J., Durá Doménech, A. i Vera Guarinos, J., Fonaments físics de les construccions arquitectòniques (Publicacions de la Universitat d’Alacant, Alacant, 2011). Capítol 12.

Rodes Roca, J. J., Exercicis i problemes dels fonaments físics d’arquitectura. I. Vectors lliscants i geometria de masses (ECU, Alacant, 2009)

Tipler, P. A. i Mosca, G., Física per a la ciència i la tecnologia, Volum 1 (Reverté, Barcelona, 2010). Capítols 1 i 12.

Categories
Materials docents Objectius

Mètode de Maxwell-Cremona

La imatge representa la resolució pel mètode de Maxwell-Cremona d’una estructura articulada plana isostàtica i el càlcul gràfic dels esforços interns d’aquesta. Punxeu la imatge per a veure-la ampliada (autor José Antonio Vázquez Rodríguez, Departament de Tecnologia de la Construcció de l’Escola Tècnica Superior d’Arquitectura de la Universidade da Coruña).

En aquest enllaç podeu descarregar un exercici resolt en format pdf realitzat pel professorat d’aquest departament que també fa docència a l‘Escola Universitària d’Arquitectura Tècnica de la Universidade da Coruña.

Categories
Materials docents

Estructures (diapositives en xarxa)

L’evolució de la xarxa permet compartir molts treballs del professorat que es poden implementar en el bloc. Hem vist exemples de vídeos al llarg del curs i ara farem ús d’una aplicació en la xarxa anomenada slideshare, que permet compartir presentacions que el professorat ha deixat en aquest entorn. A continuació podeu veure una presentació relacionada amb les estructures en la construcció. Comprovareu que apliquem els conceptes de l’estàtica i la deformació a elements estructurals reals.

Categories
Assignatura Objectius Temes

Tema 10. Entramats articulats plans

En aquest capítol estudiarem les forces i moments necessaris perquè els entramats articulats plans romanguen estàtics. Haurem d’esquematitzar les estructures identificant les càrregues que li són aplicades i calculant tant les forces que suporten els seus distints elements, com, si és el cas, les reaccions en els seus suports. S’aplicarà el concepte d’equilibri de forces en sistemes estructurals isostàtics, plans o reductibles a plans així com els conceptes bàsics relatius als esforços interns axials en les barres que componen l’entramat articulat pla.

Dins l’àmbit de les construccions arquitectòniques, els entramats articulats plans estan formats per barres coplanàries unides entre si per articulacions. Els ponts, les encavallades, les bigues, les grues i altres estructures semblants són un exemple corrent d’entramats. L’objectiu fonamental és la resolució de l’entramat, és a dir, obtenir les reaccions en els seus suports i les forces internes axials sobre els membres de l’estructura. En aquest estudi caldrà saber les hipòtesis simplificadores utilitzades en aquesta resolució, els diferents tipus d’entramats articulats bidimensionals i els mètodes de resolució que s’utilitzaran tant analítics (mètode dels nusos i Ritter) com gràfics (mètode gràfic del diagrama Maxwell-Cremona).

Un document amb un resum del contingut teòric d’elasticitat i esforços en elements estructurals es pot descarregar des de l’adreça electrònica del Repositori Institucional de la Universitat d’Alacant: http://rua.ua.es/dspace/handle/10045/22316. Podeu consultar la presentació corresponent a la sessió de teoria d’entramats articulats plans en l’adreça electrònica http://hdl.handle.net/10045/21913.

Bibliografia

Rodes Roca, J. J., Durá Doménech, A. i Vera Guarinos, J., Fonaments físics de les construccions arquitectòniques (Publicacions de la Universitat d’Alacant, Alacant, 2011). Capítol 11.

Rodes Roca, J. J., Exercicis i problemes dels fonaments físics d’arquitectura. I. Vectors lliscants i geometria de masses (ECU, Alacant, 2009)

Tipler, P. A. i Mosca, G., Física per a la ciència i la tecnologia, Volum 1 (Reverté, Barcelona, 2010). Capítols 1 i 12.

Categories
Assignatura Objectius Temes

Tema 9. Principis del comportament elàstic del sòlid

En aquest capítol s’estudiarà el comportament dels cossos sòlids sotmesos a l’acció d’un sistema de forces exteriors i que ofereixen una resposta elàstica, és a dir, que són capaços de recuperar completament les dimensions originals quan se suprimeixen les forces aplicades. Aquesta recuperació és deguda a l’acció de les forces internes que apareixen en el sòlid per efecte de les exteriors.

El tractament que utilitzarem està limitat per les consideracions següents:

  1. No tindrem en compte les situacions límit que el sistema exterior puga originar, amb tota la problemàtica que això implica, ja que aquest seria el camp de la resistència de materials.
  2. Tampoc tindrem en compte les relacions globals que s’han de complir quan es pretén preveure el comportament real d’un conjunt tridimensional de cossos sòlids que, sota l’acció de forces exteriors, es poden deformar contínuament i arbitràriament. Aquesta situació entra de ple dins el món de la teoria d’estructures.

La idea base de tot el que exposarem s’origina en l’observació quotidiana del fet que els cossos, sota l’acció de forces exteriors, es deformen. Deformació que, en general, serà petita pel que fa a les dimensions pròpies del cos, cosa que permet suposar que durant la deformació no canviaran les posicions relatives de les forces actuants respecte del cos. I així, les equacions d’equilibri que es poden utilitzar són les mateixes que s’aplicarien si el cos fóra rígid.

Conceptualment, caldrà saber el comportament d’un sòlid deformable mitjançant la corba tensió-deformació, l’aplicació del mètode de seccions, els tipus de tensió i les deformacions axial i lateral. Particularment interessant per a l’edificació és la determinació de l’elàstica o deformada d’una biga en flexió pura.

Un document amb un resum del contingut teòric d’elasticitat i esforços en elements estructurals es pot descarregar des de l’adreça electrònica del Repositori Institucional de la Universitat d’Alacant: http://rua.ua.es/dspace/handle/10045/22316. Podeu consultar la presentació corresponent a la sessió de teoria de principis del comportament elàstic del sòlid en l’adreça electrònica http://hdl.handle.net/10045/21707.

Bibliografia

Rodes Roca, J. J., Durá Doménech, A. i Vera Guarinos, J., Fonaments físics de les construccions arquitectòniques (Publicacions de la Universitat d’Alacant, Alacant, 2011). Capítol 10.

Rodes Roca, J. J., Exercicis i problemes dels fonaments físics d’arquitectura. I. Vectors lliscants i geometria de masses (ECU, Alacant, 2009)

Tipler, P. A. i Mosca, G., Física per a la ciència i la tecnologia, Volum 1 (Reverté, Barcelona, 2010). Capítols 1 i 12.

Categories
Assignatura Objectius Temes

TEMA 6. Principis de l’estàtica

En aquest capítol es pretén que l’alumnat comprenga els principis fonamentals de l’estàtica i la seua utilització per a la resolució de casos pràctics. Els conceptes bàsics que s’hauran d’adquirir són:

  1. L’aplicació de les lleis de Newton.
  2. Concepte d’equilibri (en el sentit ample).
  3. Els principis de l’estàtica.
  4. Els tipus d’enllaços o lligams.
  5. Els casos de fregament entre superfícies en contacte.
  6. El diagrama de sòlid lliure.

Els aspectes esmentats anteriorment són de gran interès per al desenvolupament de qualsevol projecte d’enginyeria i/o arquitectura relacionat amb l’edificació i la construcció en general. L’arquitectura i la tècnica en general estudien sistemes físics sotmesos a l’acció de forces. Aquestes forces poden tenir els orígens següents: a) el pes dels elements que formen el sistema; b) la cohesió interna entre les diferents parts del sistema; c) l’acció de càrregues exteriors al sistema, transitòries o permanents, puntuals o distribuïdes, etc., i d) les limitacions que altres sistemes imposen al moviment del que es considera.

 D’acord amb els principis de la mecànica de Newton, hi ha una relació entre força aplicada sobre un cos o sistema i el seu estat de moviment, on el repòs és un estat de moviment més. D’una manera àmplia, es pot definir l’estàtica com la part de la mecànica que estudia les forces i les condicions sota les quals els cossos sotmesos a forces es troben en equilibri. Per tot això, l’estudi de l’estàtica és primordial per al tècnic constructor, ja que les seues realitzacions han de satisfer la condició necessària d’estar en equilibri estable.

Al llarg dels apartats que formen aquest capítol tractarem els principis de l’estàtica, amb especial èmfasi en els aspectes que tenen a veure amb l’arquitectura i els problemes que plantegen les construccions arquitectòniques. En particular definirem, amb la major precisió possible, les forces, els tipus de forces i la seua naturalesa física; establirem el concepte d’equilibri en les seues diverses accepcions i, finalment, farem un catàleg sistemàtic dels diferents tipus de forces (siguen forces aplicades exteriors o forces de lligam) que poden actuar sobre un sistema material, considerat aquest com un sòlid rígid.

Un document amb un resum dels capítols dedicats als principis de l’estàtica i la resolució tant analítica com gràfica es pot descarregar des de l’adreça electrònica del Repositori Institucional de la Universitat d’Alacant: http://rua.ua.es/dspace/handle/10045/20610. Podeu consultar la presentació corresponent a la sessió de teoria de principis de l’estàtica en l’adreça electrònica http://hdl.handle.net/10045/21305.

Els vídeos següents expliquen la llei d’inèrcia de Newton i una ressenya històrica.

[kml_flashembed movie="http://www.youtube.com/v/uqvDem5ExIs" width="396" height="297" wmode="transparent" /]

[kml_flashembed movie="http://www.youtube.com/v/58cRjUjcTSU" width="396" height="297" wmode="transparent" /]

Bibliografia

Rodes Roca, J. J., Durá Doménech, A. i Vera Guarinos, J., Fonaments físics de les construccions arquitectòniques (Publicacions de la Universitat d’Alacant, Alacant, 2011). Capítol 7.

Rodes Roca, J. J., Exercicis i problemes dels fonaments físics d’arquitectura. I. Vectors lliscants i geometria de masses (ECU, Alacant, 2009)

Tipler, P. A. i Mosca, G., Física per a la ciència i la tecnologia, Volum 1 (Reverté, Barcelona, 2010). Capítols 1 i 12.

Categories
Assignatura Objectius Temes

Tema 5. Moments i direccions principals d’inèrcia de superfícies planes

En aquest capítol estudiarem la manera de descriure les característiques d’inèrcia (moments i productes d’inèrcia) d’una superfície plana respecte de qualsevol sistema de referència ortogonal. En primer lloc es considerarà el que ocorre quan un sistema de referència gira respecte del seu origen un cert angle, i obtindrem les equacions generals per al gir d’eixos. En un segon pas s’obtindrà el sistema de referència respecte del qual les magnituds d’inèrcia tenen valors extrems (màxim i mínim). Aquest sistema de referència es denomina eixos principals d’inèrcia, i conèixer-lo és de vital importància en l’estudi del comportament elàstic dels elements portants que apareixen en l’estudi de les construccions arquitectòniques.

Com a pas previ a la deducció dels eixos principals d’inèrcia es veurà l’expressió matricial que relaciona els moments d’inèrcia d’eixos que tenen un mateix punt d’origen i la definició de eixos conjugats d’inèrcia. Finalment es definiran els invariants d’inèrcia respecte a la rotació d’eixos amb el mateix origen.

Els mètodes gràfics en geometria de masses s’han desenvolupat al llarg del temps per a aconseguir els mateixos objectius que en el cas analític. Es poden calcular els elements d’inèrcia d’una superfície plana utilitzant tècniques estrictament gràfiques. Encara que no s’explicaran en les classes teòriques resulta interessant conèixer aquests procediments: el·lipse d’inèrcia, cercle de Mohr i cercle de Land (anomenat per alguns de Land-Mohr, per tal com és una variant del de Mohr).

Un document amb un resum del bloc temàtic de geometria de masses es pot descarregar des de l’adreça electrònica del Repositori Institucional de la Universitat d’Alacant: http://rua.ua.es/dspace/handle/10045/19107. Podeu consultar la presentació corresponent a la sessió de teoria de moments d’inèrcia en l’adreça electrònica http://hdl.handle.net/10045/21145. La resolució d’exercicis seleccionats del bloc de Geometria de masses es pot consultar en l’adreça electrònica http://hdl.handle.net/10045/21304.

Bibliografia

Rodes Roca, J. J., Durá Doménech, A. i Vera Guarinos, J., Fonaments físics de les construccions arquitectòniques (Publicacions de la Universitat d’Alacant, Alacant, 2011). Capítol 6.

Rodes Roca, J. J., Exercicis i problemes dels fonaments físics d’arquitectura. I. Vectors lliscants i geometria de masses (ECU, Alacant, 2009)

Tipler, P. A. i Mosca, G., Física per a la ciència i la tecnologia, Volum 1 (Reverté, Barcelona, 2010). Capítols 1 i 12.

Categories
Assignatura Objectius Temes

Tema 4. Moments d’inèrcia de superfícies planes

En aquest capítol definirem les característiques d’inèrcia que es poden associar a qualsevol distribució de masses que estiga continguda en un pla, i que a partir d’ara denominarem superfície o secció plana. La justificació d’aquest estudi és la relació íntima que hi ha entre el comportament elàstic dels elements constructius en general i la seua forma. Per tant, caldrà entendre les definicions de moment d’inèrcia d’una superfície plana, de producte d’inèrcia i el radi de gir.

Com a cas particular de l’equació del camp de moments d’inèrcia, s’analitzarà el cas particular en el qual l’origen del sistema de referència es fa coincidir amb el centre de gravetat de la superfície plana: teorema de Steiner o dels eixos paral·lels.

Finalment, s’aplicaran a seccions relacionades amb elements constructius com bigues o túnels.

En el laboratori de física es posarà en pràctica els coneixements teòrics d’aquest capítol per tal de comprovar experimentalment el teorema de Steiner.

Un document amb un resum del bloc temàtic de geometria de masses es pot descarregar des de l’adreça electrònica del Repositori Institucional de la Universitat d’Alacant: http://rua.ua.es/dspace/handle/10045/19107. Podeu consultar la presentació corresponent a la sessió de teoria de moments d’inèrcia en l’adreça electrònica http://hdl.handle.net/10045/20985.

Bibliografia

Rodes Roca, J. J., Durá Doménech, A. i Vera Guarinos, J., Fonaments físics de les construccions arquitectòniques (Publicacions de la Universitat d’Alacant, Alacant, 2011). Capítol 5.

Rodes Roca, J. J., Exercicis i problemes dels fonaments físics d’arquitectura. I. Vectors lliscants i geometria de masses (ECU, Alacant, 2009)

Tipler, P. A. i Mosca, G., Física per a la ciència i la tecnologia, Volum 1 (Reverté, Barcelona, 2010). Capítols 1 i 12.