Problema 5 de la Fase Local (viernes) de la Olimpiada Matemática Española (2018) Se dirige a una edad de: 16-17 años
Sea n un número natural. Probar que si la última cifra de 7n es 3, la penúltima es 4.
Solución:
De nuevo otro problema de números enteros con potencias de 7. La estructura de la solución es muy conocida, se trata de encontrar un patrón en las cifras y estudiar los casos que se presenten. Se puede trabajar por inducción o bien por restos (congruencias).
La clave está en que 7⁴ = 2401, que es de la forma 100k + 1. De esta forma, 7n + 4 = 7n·(100k + 1) = 100k + 7n, por lo que 7n + 4 tiene las mismas últimas dos cifras que 7n. Es fácil razonarlo de muchas otras formas, incluso aritméticamente.
Por ejemplo: está claro que los últimos dos dígitos de un producto sólo dependen de los dos últimos dígitos de los factores, de forma que, puesto que 7·7 = 49, 49·7 = 343, que acaba en 43, y 43·7 = 301, que acaba en 01, y 1·7 = 7, vuelven a repetirse los dos últimos dígitos de las potencias de 7 cada 4 potencias, siendo sus terminaciones 07, 49, 43, y 01.
Por lo tanto, las únicas posibles dos últimas cifras para las potencias de 7 son 01, 07, 49 y 43. Por lo tanto, la única forma de que la última cifra de 7n sea 3 es que n sea de la forma 4r + 3, es decir, que la penúltima cifra es evidente que será 4.
El error más común en este tipo de razonamientos es demostrar que los valores de la forma 4r + 3 acaban en 43 y tienen un 3 en la última cifra y un 4 en la penúltima, pero no mencionar que los que no son de esa forma (los demás) no pueden tener el 3 como última cifra (como es evidente, una vez descubierta la secuencia) y que, como se pide, acabar en 3 implica que la penúltima cifra es un 4.