Números de colores

Problema 1 de la Fase Local de la Olimpiada Española de Matemáticas 2023 (viernes mañana)
Se dirige a una edad de: 16-17 años

Sea n un entero positivo.

Cada uno de los números 1, 2, 3, …, 2023 se pinta de un color a escoger entre n distintos.

Una vez coloreados, se observa que cualquier par (a, b) con a < b y de manera que a | b (a divide a b), satisface que a y b son de distinto color.

Encuentra el menor valor de n para el cual esta situación es posible.

Solución a suma de cifras

Problema 0 del concurso Olitele 2022
Se dirige a una edad de: 16-17 años

Hay algunos números de cuatro cifras (es decir, enteros entre el 1000 y el 9999, incluidos) con la siguiente propiedad:

Si hacemos la suma de ellos con 2022 resulta otro número de cuatro cifras y, entonces, si miramos el número resultante, el 2022 y el número de partida, entre todos ellos aparecen los 10 dígitos.

¿Cuánto suman los números que cumplen este enunciado?

Solución:
Continue reading Solución a suma de cifras

Suma de cifras

Problema 0 del concurso Olitele 2022
Se dirige a una edad de: 16-17 años

Hay algunos números de cuatro cifras (es decir, enteros entre el 1000 y el 9999, incluidos) con la siguiente propiedad:

Si hacemos la suma de ellos con 2022 resulta otro número de cuatro cifras y, entonces, si miramos el número resultante, el 2022 y el número de partida, entre todos ellos aparecen los 10 dígitos.

¿Cuánto suman los números que cumplen este enunciado?

Solución: Aquí.

Solución a el cubo más primo

Problema 5 del nivel C de la Olimpiada Autonómica de la Comunidad Valenciana
Se dirige a una edad de: 10 -11 años

Intenta colocar en los ocho vértices del cubo los números 0, 1, 2, 3, 4, 5, 6 y 7, de manera que los números de cualquier arista sumen un número primo.

Solución:
Continue reading Solución a el cubo más primo

Solución a el bosque

Problema 5 del nivel B de la Olimpiada Autonómica de la Comunidad Valenciana
Se dirige a una edad de: 14 -15 años

Un caprichoso mago vive en un bosque mágico en el que inicialmente hay 800 árboles, 100 abetos y 700 pinos.

Cada noche, el mago elige un único árbol al azar y le aplica un hechizo que lo transforma en la otra especie.

Su hechizo no siempre sale bien, sólo consigue transformar una tercera parte de las veces un abeto en un pino, pero cuando empieza con un pino es peor, sólo la quinta parte de las veces consigue que se transforme en un abeto.

a) ¿Qué es más probable que ocurra la primera noche, que aumenten los abetos, o los pinos en el bosque? (se supone que no pueden haber más de 800 árboles en el bosque, no nacen nuevos, ni tampoco mueren).

b) ¿Y si hubiese 700 abetos y 100 pinos al principio?

c) ¿Con qué cantidad inicial de pinos y abetos la probabilidad de aumentar los pinos o los abetos es la misma?

Solución:
Continue reading Solución a el bosque

El bosque

Problema 5 del nivel B de la Olimpiada Autonómica de la Comunidad Valenciana
Se dirige a una edad de: 14 -15 años

Un caprichoso mago vive en un bosque mágico en el que inicialmente hay 800 árboles, 100 abetos y 700 pinos.

Cada noche, el mago elige un único árbol al azar y le aplica un hechizo que lo transforma en la otra especie.

Su hechizo no siempre sale bien, sólo consigue transformar una tercera parte de las veces un abeto en un pino, pero cuando empieza con un pino es peor, sólo la quinta parte de las veces consigue que se transforme en un abeto.

a) ¿Qué es más probable que ocurra la primera noche, que aumenten los abetos, o los pinos en el bosque? (se supone que no pueden haber más de 800 árboles en el bosque, no nacen nuevos, ni tampoco mueren).

b) ¿Y si hubiese 700 abetos y 100 pinos al principio?

c) ¿Con qué cantidad inicial de pinos y abetos la probabilidad de aumentar los pinos o los abetos es la misma?

Solución: Aquí.