Solución a buscando divisiones

Concurso AIME 2016 (Examen Matemático Invitacional Americano)
Se dirige a una edad de: 15-16 años

En esta competición se invita a las personas que han tenido cierto éxito en el AMC 10 o AMC 12, consta de 15 preguntas para 3 horas, y la respuesta siempre es un número entre 000 y 999.

Cuando dividimos los números 702, 787 y 855 entre el mismo número entero positivo m, obtenemos el mismo resto r.

Cuando dividimos los números 412, 722 y 815 entre el entero positivo n, el resto siempre es s, distinto de r.

Encuentra m + n + r + s.

Solución: Continue reading Solución a buscando divisiones

Buscando divisiones

Concurso AIME 2016 (Examen Matemático Invitacional Americano)
Se dirige a una edad de: 15-16 años

En esta competición se invita a las personas que han tenido cierto éxito en el AMC 10 o AMC 12, consta de 15 preguntas para 3 horas, y la respuesta siempre es un número entre 000 y 999.

Cuando dividimos los números 702, 787 y 855 entre el mismo número entero positivo m, obtenemos el mismo resto r.

Cuando dividimos los números 412, 722 y 815 entre el entero positivo n, el resto siempre es s, distinto de r.

Encuentra m + n + r + s.

Solución a seis consecutivos

Olimpiada Junior de los Balcanes, 2017.
Se dirige a una edad de: 16 años

Encuentra todos los conjuntos de seis números enteros positivos consecutivos que cumplen que si multiplicamos dos de ellos y le sumamos el producto de otros dos, obtenemos lo mismo que si multiplicamos los otros dos restantes.

Hay que encontrar todos los conjuntos y demostrar que no existen más.

Solución:

Continue reading Solución a seis consecutivos

Seis consecutivos

Olimpiada Junior de los Balcanes, 2017.
Se dirige a una edad de: 16 años

Encuentra todos los conjuntos de seis números enteros positivos consecutivos que cumplen que si multiplicamos dos de ellos y le sumamos el producto de otros dos, obtenemos lo mismo que si multiplicamos los otros dos restantes.

Hay que encontrar todos los conjuntos y demostrar que no existen más.

Soilución: Aquí

Solución a 100 pollitos

Mathcounts, ronda final, séptimo problema de 2017
Se dirige a una edad de: 13

En una granja, cien pollitos se distribuyen pacíficamente en una circunferencia. En un momento determinado, simultaneamente, cada pollito picotea al pollito de la izquierda o de la derecha, (a uno de los dos aleatoriamente).

¿Qué número de pollitos se estima que no hayan recibido ningún picotazo?

Continue reading Solución a 100 pollitos

100 pollitos

Mathcounts, ronda final, séptimo problema de 2017
Se dirige a una edad de: 13

En una granja, cien pollitos se distribuyen pacíficamente en una circunferencia. En un momento determinado, simultaneamente, cada pollito picotea al pollito de la izquierda o de la derecha, (a uno de los dos aleatoriamente).

¿Qué número de pollitos se estima que no hayan recibido ningún picotazo?

Solución: Aquí

Solución a dígitos impares

Primer nivel de la Olimpiada de Mayo, 2016.
Se dirige a una edad de: 12 años

A cada número de tres dígitos Matías le sumó el número que se obtiene invirtiendo sus dígitos.

Por ejemplo, al número 927 le sumó el 729.

Calcular en cuántos casos el resultado de la suma de Matías es un número con todos sus dígitos impares.

Solución:
Continue reading Solución a dígitos impares