Solución a sucesión recursiva

Problema 2 de la fase nacional de la 56 Olimpiada Matemática Española (2020)
Se dirige a una edad de: 16-17 años

Consideramos la sucesión de números enteros f(n), con n mayor o igual que 1, definida por las siguientes condiciones:

f(1) = 1.

Si n es par, f(n) = f(n/2).

Si n es impar y f(n – 1) es impar, entonces f(n) = f(n – 1) – 1.

Si n es impar y f(n – 1) es par, entonces f(n) = f(n – 1) + 1.

a) Calcula f(22020 – 1).

b) Demuestra que la sucesión no es periódica, es decir, que no existen enteros positivos t y n0 que cumplan que si n es mayor que n0, entonces f(n + t) = f(n).

Solución:
Continue reading Solución a sucesión recursiva

Sucesión recursiva

Problema 2 de la fase nacional de la 56 Olimpiada Matemática Española (2020)
Se dirige a una edad de: 16-17 años

Consideramos la sucesión de números enteros f(n), con n mayor o igual que 1, definida por las siguientes condiciones:

f(1) = 1.

Si n es par, f(n) = f(n/2).

Si n es impar y f(n – 1) es impar, entonces f(n) = f(n – 1) – 1.

Si n es impar y f(n – 1) es par, entonces f(n) = f(n – 1) + 1.

a) Calcula f(22020 – 1).

b) Demuestra que la sucesión no es periódica, es decir, que no existen enteros positivos t y n0 que cumplan que si n es mayor que n0, entonces f(n + t) = f(n).

Solución: Aquí.

Solución a juego para dos

Problema 4 de la fase nacional de la 56 Olimpiada Matemática Española (2020)
Se dirige a una edad de: 16-17 años

Ana y Benito juegan a un juego que consta de 2020 rondas.

Inicialmente, en la mesa hay 2020 cartas, numeradas de 1 a 2020, y Ana tiene una carta adicional con el número 0.

En la ronda k-ésima, el jugador que no tiene la carta k – 1 decide si toma la carta k o si se la entrega al otro jugador.

El número de cada carta indica su valor en puntos.

Al terminar el juego, gana quien tiene más puntos.

Determina qué jugador tiene la estrategia ganadora, o si ambos jugadores pueden forzar el empate, y describe la estrategia a seguir.
Solución: Continue reading Solución a juego para dos

Juego para dos

Problema 4 de la fase nacional de la 56 Olimpiada Matemática Española (2020)
Se dirige a una edad de: 16-17 años

Ana y Benito juegan a un juego que consta de 2020 rondas.

Inicialmente, en la mesa hay 2020 cartas, numeradas de 1 a 2020, y Ana tiene una carta adicional con el número 0.

En la ronda k-ésima, el jugador que no tiene la carta k – 1 decide si toma la carta k o si se la entrega al otro jugador.

El número de cada carta indica su valor en puntos.

Al terminar el juego, gana quien tiene más puntos.

Determina qué jugador tiene la estrategia ganadora, o si ambos jugadores pueden forzar el empate, y describe la estrategia a seguir.
Solución: Aquí.

Solución a polinomios almerienses

Problema 1 de la fase nacional de la 56 Olimpiada Matemática Española (2020)
Se dirige a una edad de: 16-17 años

Decimos que un polinomio p(x) , con coeficientes reales, es almeriense si tiene la forma p(x) = x³ + ax² + bx + a, y sus tres raíces son números reales positivos en progresión aritmética.

Halla todos los polinomios almerienses tales que p(7/4) = 0.

Solución:
Continue reading Solución a polinomios almerienses

Polinomios almerienses

Problema 1 de la fase nacional de la 56 Olimpiada Matemática Española (2020)
Se dirige a una edad de: 16-17 años

Decimos que un polinomio p(x) , con coeficientes reales, es almeriense si tiene la forma p(x) = x³ + ax² + bx + a, y sus tres raíces son números reales positivos en progresión aritmética.

Halla todos los polinomios almerienses tales que p(7/4) = 0.

Solución: Aquí.

Solución a juego de piedras

Problema 7 de la Fase Local de la LVI OME 2020
Se dirige a una edad de: 16-17 años

Ana y Bernardo juegan al siguiente juego.

Se empieza con una bolsa que contienen n >= 1 piedras.

En turnos sucesivos, y empezando por Ana, cada jugador puede hacer los siguientes movimientos:

Si el número de piedras de la bolsa es par, el jugador puede coger una sola piedra o la mitad de las piedras.

Si el número de piedras de la bolsa es impar, tiene que coger una única piedra.

El objetivo del juego es coger la última piedra.

Determinar para qué valores de n tiene Ana una estrategia ganadora.

Solución:
Continue reading Solución a juego de piedras

Juego de piedras

Problema 7 de la Fase Local de la LVI OME 2020
Se dirige a una edad de: 16-17 años

Ana y Bernardo juegan al siguiente juego.

Se empieza con una bolsa que contienen n >= 1 piedras.

En turnos sucesivos, y empezando por Ana, cada jugador puede hacer los siguientes movimientos:

Si el número de piedras de la bolsa es par, el jugador puede coger una sola piedra o la mitad de las piedras.

Si el número de piedras de la bolsa es impar, tiene que coger una única piedra.

El objetivo del juego es coger la última piedra.

Determinar para qué valores de n tiene Ana una estrategia ganadora.

Solución: Aquí.

Solución a cuadrícula láser

Problema 6 de la Fase Local de la LVI OME 2020
Se dirige a una edad de: 16-17 años

Sea n un entero positivo. En una cuadrícula de tamaño n × n, algunas casillas tienen un espejo de doble cara a lo largo de una de sus diagonales.

En el exterior de cada casilla de los lados izquierdo y derecho de la cuadrícula se encuentra un puntero láser, que apunta horizontalmente hacia la cuadrícula.

Los láseres se numeran de 1 a n en cada lado, en ambos casos de arriba hacia abajo.

Un láser es rojo cuando sale de la cuadrícula por el borde superior y es verde si sale de la cuadrícula por el borde inferior.

Si cada láser sale o bien por el borde inferior o por el superior, demostrar que la suma de los números con los que se numera a los láseres rojos es menor o igual que la suma de los números con los que se numera a los láseres verdes.

Solución:
Continue reading Solución a cuadrícula láser

Cuadrícula láser

Problema 6 de la Fase Local de la LVI OME 2020
Se dirige a una edad de: 16-17 años

Sea n un entero positivo. En una cuadrícula de tamaño n × n, algunas casillas tienen un espejo de doble cara a lo largo de una de sus diagonales.

En el exterior de cada casilla de los lados izquierdo y derecho de la cuadrícula se encuentra un puntero láser, que apunta horizontalmente hacia la cuadrícula.

Los láseres se numeran de 1 a n en cada lado, en ambos casos de arriba hacia abajo.

Un láser es rojo cuando sale de la cuadrícula por el borde superior y es verde si sale de la cuadrícula por el borde inferior.

Si cada láser sale o bien por el borde inferior o por el superior, demostrar que la suma de los números con los que se numera a los láseres rojos es menor o igual que la suma de los números con los que se numera a los láseres verdes.

Solución: Aquí.