Solución a dos ortoedros unidos

Problema 7 del concurso marató de problemes 2020
Se dirige a una edad de: 14-15 años

Un ortoedro es un poliedro con seis caras rectangulares perpendiculares cada una de ellas a sus vecinas.

Supongamos que tenemos dos octoedros que tienen la particularidad de que pueden unirse por una de sus caras para formar un ortoedro mayor.

Demuestra que, si la superficie total del ortoedro mayor es exactamente 3/4 de la suma de las superficies de los dos originales, entonces las dimensiones del ortoedro mayor x, y, z cumplen la relación 1/x + 1/y = 2/z.

Solución: Continue reading Solución a dos ortoedros unidos

Dos ortoedros unidos

Problema 7 del concurso marató de problemes 2020
Se dirige a una edad de: 14-15 años

Un ortoedro es un poliedro con seis caras rectangulares perpendiculares cada una de ellas a sus vecinas.

Supongamos que tenemos dos octoedros que tienen la particularidad de que pueden unirse por una de sus caras para formar un ortoedro mayor.

Demuestra que, si la superficie total del ortoedro mayor es exactamente 3/4 de la suma de las superficies de los dos originales, entonces las dimensiones del ortoedro mayor x, y, z cumplen la relación 1/x + 1/y = 2/z.

Solución: Aquí.

Solución a un triminó atrapado

Problema 6 de la marató de problemes 2020
Se dirige a una edad de: 14-15 años

Se ha inscrito un triminó formado por tres cuadrados iguales unidos por sus lados formando un ángulo recto, en un rectángulo, de forma que cinco de sus vértices están en los lados del rectángulo, como se ve en la figura.

Si suponemos que el lado de cada cuadrado es un número conocido (pongamos que vale 3), calcula el área del rectángulo.

Solución: Continue reading Solución a un triminó atrapado

Un triminó atrapado

Problema 6 de la marató de problemes 2020
Se dirige a una edad de: 14-15 años

Se ha inscrito un triminó formado por tres cuadrados iguales unidos por sus lados formando un ángulo recto, en un rectángulo, de forma que cinco de sus vértices están en los lados del rectángulo, como se ve en la figura.

Si suponemos que el lado de cada cuadrado es un número conocido (pongamos que vale 3), calcula el área del rectángulo.

Solución: Aquí.

Solución a sala de cine

Problema 4 de la Marató de problemes 2020
Se dirige a una edad de: 14-15 años

Una sala de cine hace cuentas acerca de la asistencia de espectadores.

Los cinco días de diario, la media aritmética es de 1100 asistentes.

El sábado y el domingo, la sala está llena.

Si se tienen en cuenta todos los días de la semana, la media sube un 24% respecto a los días de diario.

¿Cuál es la capacidad de la sala?

Solución:

Es un problema bastante sorprendente. Si la media sube un 24% respecto a los días de diario, entonces es que alcanza los 1364 espectadores de media.

Sin embargo, que la media de los cinco días de diario sea de 1100, significa que en total asisten 5500 personas en total. Y si los siete días es de 1364 personas, es que en total acuden 9584 personas los siete días de la semana.

Si descontamos, 9584 – 5500 = 4048, lo que supone que sábado y domingo han acudido 4048.

Si eso supone llenar la sala, eso supone un aforo de 2024 personas. Que es bastante más que el 24% de 1364, claro.

Sala de cine

Problema 4 de la Marató de problemes 2020
Se dirige a una edad de: 14-15 años

Una sala de cine hace cuentas acerca de la asistencia de espectadores.

Los cinco días de diario, la media aritmética es de 1100 asistentes.

El sábado y el domingo, la sala está llena.

Si se tienen en cuenta todos los días de la semana, la media sube un 24% respecto a los días de diario.

¿Cuál es la capacidad de la sala?

Solución: Aquí.

Solución a botellas en el colegio

Problema 3 de la Marató de problemes 2020
Se dirige a una edad de: 14-15 años

Entre 6 personas han recogido 505 botellas de plástico para un trabajo escolar.

Se sabe que cada uno ha traído al menos 11 botellas, ya que parte del trabajo era crear un determinado objeto geométrico.

Andrés dice ¡yo he traído 20!

Bea dice que ha traído 21 y Cris afirma que ha traído 22.

Dani dice “ahora que habéis dicho eso, yo estoy seguro de que soy el que más he traído”.

¿Cuántas botellas ha tenido que traer Dani para poder hacer esa afirmación, como mínimo?

Solución:
Para que Dani pueda afirmar que es el que más ha traído, tiene que asegurarse de que nadie ha traído más que él.

En el peor de los casos, cuatro de los compañeros habrán traído muy pocas, y el quinto muchas, que es contra el que tendrá que competir Dani.

Como sabe, por las afirmaciones, que tres compañeros han traído 20, 21 y 22, que suman 63, el caso más desfavorable es que el cuarto compañero sólo trajera 11, que es el mínimo.

Entre esos cuatro compañeros, en ese hipotético caso, tendrían 74 botellas, y quedarían 431 para aportar entre Dani y su rival.

Por tanto, Dani debe aportar al menos 216, que es el primer número entero mayor que la mitad de 431.

Botellas en el colegio

Problema 3 de la Marató de problemes 2020
Se dirige a una edad de: 14-15 años

Entre 6 personas han recogido 505 botellas de plástico para un trabajo escolar.

Se sabe que cada uno ha traído al menos 11 botellas, ya que parte del trabajo era crear un determinado objeto geométrico.

Andrés dice ¡yo he traído 20!

Bea dice que ha traído 21 y Cris afirma que ha traído 22.

Dani dice “ahora que habéis dicho eso, yo estoy seguro de que soy el que más he traído”.

¿Cuántas botellas ha tenido que traer Dani para poder hacer esa afirmación, como mínimo?

Solución: Aquí.

Solución a números en una tabla

Problema 2 de la Marató de problemes 2020
Se dirige a una edad de: 14-15 años

Ponemos los números mayores que 1 en una tabla, de cuatro en cuatro por filas.

Una fila hacia se ordena hacia la derecha, empezando en la columna C, y otra hacia la izquierda empezando por la columna D.

¿En qué columna cae el 2020?
Solución:
Continue reading Solución a números en una tabla