Solución al menor entero

Problema 0 de la Marató de problemes 2020
Se dirige a una edad de: 14-15 años

¿Cuál es el número entero positivo más pequeño que se puede escribir (en el formato habitual) sólo con cifras 1 y 0, pero que es múltiplo de 225?

Y añado yo ¿habría algún número más pequeño que fuese múltiplo de 225 y se escriba usando sólo dos tipos de cifra?
Solución:
Continue reading Solución al menor entero

Solución a juego de piedras

Problema 7 de la Fase Local de la LVI OME 2020
Se dirige a una edad de: 16-17 años

Ana y Bernardo juegan al siguiente juego.

Se empieza con una bolsa que contienen n >= 1 piedras.

En turnos sucesivos, y empezando por Ana, cada jugador puede hacer los siguientes movimientos:

Si el número de piedras de la bolsa es par, el jugador puede coger una sola piedra o la mitad de las piedras.

Si el número de piedras de la bolsa es impar, tiene que coger una única piedra.

El objetivo del juego es coger la última piedra.

Determinar para qué valores de n tiene Ana una estrategia ganadora.

Solución:
Continue reading Solución a juego de piedras

Solución a perpendiculares

Problema 5 de la Fase Local de la LVI OME 2020
Se dirige a una edad de: 16-17 años

Sea ABC un triángulo con AB < AC y sea I su incentro. El incírculo es tangente al lado BC en el punto D.

Sea E el único punto que satisface que D es el punto medio del segmento BE.

La línea perpendicular a BC que pasa por E corta a CI en el punto P.

Demostrar que BP es perpendicular a AD.

Solución:
Continue reading Solución a perpendiculares

Solución a polinomio positivo

Problema 4 de la Fase Local de la LVI OME 2020
Se dirige a una edad de: 16-17 años

Consideramos el siguiente polinomio para los valores reales a, b y c:

p(x) = (x – a)(x – b) + (x – b)(x – c) + (x – c)(x – a).

Demuestra que p(x) >= 0 para todo x real si y solamente si a = b = c.

Solución:
Continue reading Solución a polinomio positivo

Solución a no acaba en uno

Problema 1 de la Fase Local de la LVI OME 2020
Se dirige a una edad de: 16-17 años

Dado un número natural n > 1 realizamos la siguiente operación: si n es par, lo dividimos entre 2; si n es impar, le sumamos 5.

Si el número obtenido tras esta operación es 1, paramos el proceso; en caso contrario, volvemos a aplicar la misma operación, y así sucesivamente.

Determinar todos los valores de n para los cuales este proceso es finito, es decir, se llega a 1 en algún momento.
Solución:
Continue reading Solución a no acaba en uno

Solución a la cinta de las latas

Problema 4 de la Olitele 2019
Se dirige a una edad de: 16-17 años

En el dibujo vemos siete latas de refrescos que se mantienen unidas mediante una cinta.

Los círculos representan la parte superior de las latas, y la línea exterior representa la cinta.

Suponiendo que las latas tienen un diámetro de 6 centímetros, calcula la longitud de la cinta (de la forma a·pi + b, con a y b números enteros).
Solución:
Continue reading Solución a la cinta de las latas

Solución a la velocidad del robot

Problema 3 de la Olitele 2019
Se dirige a una edad de: 16-17 años

Berta y Bernat están aprendiendo a programar un robot. Le deben hacer recorrer d metros y lo han programado para que alcance v m/s de velocidad, pero no lo han logrado del todo y el robot se mueve más rápido, consiguiendo (v + x) m/s de velocidad.

Se sorprendieron bastante cuando, al cabo de t segundos desde que el robot había iniciado su marcha, exactamente en el momento que debía llegar a su destino, les notificaron desde la llegada que hacía s segundos que el robot había sobrepasado el punto donde debía acabar su trayecto.

Hicieron girar inmediatamente el robot 180º y lo reprogramaron, pero ahora la velocidad real del robot tampoco fue la acertada, sino que iba más despacio de lo que querían. En el camino de vuelta su velocidad era, curiosamente, (v – x) m/s. ¿Cuánto tiempo después de girar llegó al punto que debía ser el final trayecto inicial?
Solución:
Continue reading Solución a la velocidad del robot