Solución a un sistema y un eneágono

Problema 3 de la Fase Local de la Olimpiada Española de Matemáticas 2023 (viernes mañana)
Se dirige a una edad de: 16-17 años

Decimos que una terna (a, b, c) de números reales todos distintos de cero, es local, si:
a² + a = b²

b² + b = c²

c² + c = a².

(a) Probar que, si (a, b, c) es local, entonces (a – b)(b – c)(c – a) = 1.

(b) Sea A₁ A₂ … A₉ un eneágono regular (polígono regular de 9 lados). Supongamos que |A₁A₄| = 1 y sea |A₁A₂| = a, |A₁A₃| = b y |A₁A₅| = c. Prueba que (a, b, -c) es local.

Solución:
Continue reading Solución a un sistema y un eneágono

Un sistema y un eneágono

Problema 3 de la Fase Local de la Olimpiada Española de Matemáticas 2023 (viernes mañana)
Se dirige a una edad de: 16-17 años

Decimos que una terna (a, b, c) de números reales todos distintos de cero, es local, si:

a² + a = b²

b² + b = c²

c² + c = a².

(a) Probar que, si (a, b, c) es local, entonces (a – b)(b – c)(c – a) = 1.

(b) Sea A₁ A₂ … A₉ un eneágono regular (polígono regular de 9 lados). Supongamos que |A₁A₄| = 1 y sea |A₁A₂| = a, |A₁A₃| = b y |A₁A₅| = c. Prueba que (a, b, -c) es local.

Solución: Aquí.

Solución a volver los números iguales

Problema 2 de la Fase Local de la Olimpiada Española de Matemáticas 2023 (viernes mañana)
Se dirige a una edad de: 16-17 años

Sea n >= 3 un entero positivo.

Los primeros n números positivos, 1, 2, … , n se escriben en una pizarra.

María realiza el siguiente proceso tantas veces como se quiera: primero elige dos números en una pizarra, y luego los reemplaza con aquellos que resultan de sumarle a ambos el mismo número positivo.

Determinar todos los enteros positivos n para los que María puede conseguir, repitiendo este proceso, que todos los números de la pizarra sean iguales.

Solución:
Continue reading Solución a volver los números iguales

Volver los números iguales

Problema 2 de la Fase Local de la Olimpiada Española de Matemáticas 2023 (viernes mañana)
Se dirige a una edad de: 16-17 años

Sea n >= 3 un entero positivo.

Los primeros n números positivos, 1, 2, … , n se escriben en una pizarra.

María realiza el siguiente proceso tantas veces como se quiera: primero elige dos números en una pizarra, y luego los reemplaza con aquellos que resultan de sumarle a ambos el mismo número positivo.

Determinar todos los enteros positivos n para los que María puede conseguir, repitiendo este proceso, que todos los números de la pizarra sean iguales.

Solución: Aquí.

Solución a números de colores

Problema 1 de la Fase Local de la Olimpiada Española de Matemáticas 2023 (viernes mañana)
Se dirige a una edad de: 16-17 años

Sea n un entero positivo.

Cada uno de los números 1, 2, 3, …, 2023 se pinta de un color a escoger entre n distintos.

Una vez coloreados, se observa que cualquier par (a, b) con a < b y de manera que a | b (a divide a b), satisface que a y b son de distinto color.

Encuentra el menor valor de n para el cual esta situación es posible.

Solución:
Continue reading Solución a números de colores

Números de colores

Problema 1 de la Fase Local de la Olimpiada Española de Matemáticas 2023 (viernes mañana)
Se dirige a una edad de: 16-17 años

Sea n un entero positivo.

Cada uno de los números 1, 2, 3, …, 2023 se pinta de un color a escoger entre n distintos.

Una vez coloreados, se observa que cualquier par (a, b) con a < b y de manera que a | b (a divide a b), satisface que a y b son de distinto color.

Encuentra el menor valor de n para el cual esta situación es posible.

Solución: Aquí.

Solución a unos polinomios muy especiales

Problema 4 de la Fase Local de la Olimpiada Española de Matemáticas 2022 (viernes tarde)
Se dirige a una edad de: 16-17 años

Encuentra todos los polinomios p(x) con coeficientes reales tales que p(x) + p(y) + p(z) + p(x + y + z) = p(x + y) + p(y + z) + p(x + y) para cualquier terna de números reales x, y, z.

Solución:
Continue reading Solución a unos polinomios muy especiales

Unos polinomios muy especiales

Problema 4 de la Fase Local de la Olimpiada Española de Matemáticas 2022 (viernes tarde)
Se dirige a una edad de: 16-17 años

Encuentra todos los polinomios p(x) con coeficientes reales tales que p(x) + p(y) + p(z) + p(x + y + z) = p(x + y) + p(y + z) + p(x + y) para cualquier terna de números reales x, y, z.

Solución: Aquí.

Solución a un sistema con potencias

Problema 3 de la Fase Local de la Olimpiada Española de Matemáticas 2022 (viernes tarde)
Se dirige a una edad de: 16-17 años
Hallar todas las ternas de números reales (a, b, c) que cumplan el sistema:
a + b + c = 3
2a + 2b + 2c = 7
2-a + 2-b = ¾

Solución:
Continue reading Solución a un sistema con potencias