Problema 5 del nivel B de la Olimpiada Provincial de Alicante de la Olimpiada de la Comunidad Valenciana de 2024 Se dirige a una edad de: 14 -15 años
Tenemos tres dados cúbicos, uno azul, uno rojo y uno verde, un poco diferentes de los tradicionales. El dado azul tiene 5 caras con 4 puntos y una cara con un punto. El dado rojo tiene 3 caras con 5 puntos y 3 caras con 2 puntos. El dado verde tiene 5 caras con 3 puntos y una cara con 6 puntos.
Laura y Luis juegan con las siguientes reglas:
Uno de ellos elige un dado.
El otro elige uno de los dos dados restantes.
Lanzan una vez el dado que han elegido.
Gana el que obtenga la mayor puntuación.
Laura le dice a Luis que elija un dado él primero.
¿Por qué crees que lo hace?
Solución:
Aquí es muy probable que la gente que ha contestado bien conociese la historia de los dados no transitivos, que se puede buscar rápidamente en Internet.
Los enfrentamientos entre dados diferentes son ventajosos para los dados según con el que juegues.
Si enfrentamos el verde contra el rojo, de los 36 posibles resultados, en 21 ocasiones gana (si saca un 6 o si saca un 3 y el otro un 2) y pierde en los 15 restantes.
Si enfrentamos el verde al azul, gana en 11 ocasiones y pierde en 25.
Si enfrentamos el azul al rojo, tenemos una sorpresa, ya que el ganador es el rojo ya que gana el rojo en 21 y el azul en 15.
En resumidas cuentas, el verde gana al rojo pero pierde con el azul, el azul gana al verde pero pierde con el rojo y el rojo gana al azul pero pierde con el verde. Por eso se llaman no transitivos.
Así que Laura le deja elegir primero a Luis, y según qué elija, puede seleccionar un dado que le favorezca.