Home » Olimpiada Matemática Española » Dos filas de bombillas

Dos filas de bombillas

Problema 5 de la fase nacional de la 57 Olimpiada Matemática Española (2021)
Se dirige a una edad de: 16-17 años

Disponemos de 2n bombillas colocadas en dos filas (A y B) y numeradas del 1 al n en cada fila.

Algunas (o ninguna) de las bombillas están encendidas y el resto, apagadas; decimos que esto es un “estado”.

Dos estados son distintos si hay una bombilla que está apagada en uno de ellos y encendida en el otro.

Diremos que un estado es “bueno” si hay la misma cantidad de bombillas encendidas en la fila A que en la B.

Demuestra que el número total de estados buenos (EB) dividido por el número total de estados (ET), es: EB/ET = (1·3·5·…·(2n – 1))/(2n·n!).
Solución: Aquí.


Leave a comment

Tu dirección de correo electrónico no será publicada. Los campos necesarios están marcados *