Sucesión e igualdad entre productos

Problema 2 del viernes de la Fase Local de la LV OME 2019
Se dirige a una edad de: 16-17 años

Demuestra que para todo n ≥ 2 podemos encontrar n números reales x1, x2, …, xn ≠ 1 de manera que los productos x1·x2·…·xn y (1/(1 – x1))·(1/(1 – x2))·…·(1/(1 – xn)) son iguales.

Published by

dimates

Grupo de divulgación matemática de la Universidad de Alicante

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos necesarios están marcados *