Arrinconadas

Problema 5 de la fase catalana de la 57 Olimpiada Matemática Española (2020/21)
Se dirige a una edad de: 16-17 años

Ana y Bernat juegan un juego sobre un tablero ajedrezado de dimensiones 2020×2020.

Decimos que una colección de piezas puestas en ese tablero está arrinconada (en la esquina inferior izquierda) si no hay ninguna casilla vacía de forma que la casilla inmediatamente superior o inmediatamente a la derecha de ella contenga una pieza, como se muestra en la figura.

Inicialmente, hay 2020 piezas colocadas en una posición arrinconada.

En turnos alternos, comenzando por Ana, cada jugador retira dos piezas de casillas adyacentes (con un lado en común), con la condición de que la configuración restante siga siendo arrinconada.

Pierde el jugador que no puede hacer un movimiento.

Determina cuál de los dos jugadores ganará en función de la posición inicial de las 2020 piezas, suponiendo que ambos jueguen de forma óptima.

Solución: Aquí.

Published by

dimates

Grupo de divulgación matemática de la Universidad de Alicante

Deja un comentario

Tu dirección de correo electrónico no será publicada.