Home » Estalmat

Category Archives: Estalmat

Solución a cruzando el río

Problema 1 de la prueba de selección de Estalmat 2018
Se dirige a una edad de: 11-12 años

En una de las orillas de un río hay 3 adultos, 2 niños y una barca de remos muy pequeña.

Queremos que todas las personas crucen el río utilizando la barca.

En la barca sólo caben o bien un solo adulto o bien 2 niños.

Todos saben remar y está permitido que un niño vaya solo en la barca.

Entendemos por viaje a remar de un lado al otro del río:

a) ¿Cuál es el mínimo número de viajes que habrá que hacer para que todas las personas crucen el río? Explica cómo has llegado al resultado.

b) ¿Y si hubiera 8 adultos y 2 niños? ¿Y si hubiera 100 adultos y 2 niños? Explica cómo has llegado a tus respuestas.

c) Explica cómo podemos encontrar el mínimo número de viajes necesarios para cualquier número de adultos y 2 niños.

d) Si ahora, en una de las orillas hay 4 adultos y 3 niños ¿cuál es el número mínimo de viajes que habrá que hacer para que todas las personas crucen el río? ¿Cómo los harías?

e) ¿Y si hubiera 8 adultos y 3 niños? ¿Y si hubiera 100 adultos y 3 niños? Explica cómo podemos encontrar el mínimo número de viajes necesarios para cualquier número de adultos y 3 niños.

f) Explica cómo podemos encontrar el mínimo número de viajes necesarios para cualquier número de adultos y cualquier número de niños.
Solución:
(more…)

Cruzando el río

Problema 1 de la prueba de selección de Estalmat 2018
Se dirige a una edad de: 11-12 años

En una de las orillas de un río hay 3 adultos, 2 niños y una barca de remos muy pequeña.

Queremos que todas las personas crucen el río utilizando la barca.

En la barca sólo caben o bien un solo adulto o bien 2 niños.

Todos saben remar y está permitido que un niño vaya solo en la barca.

Entendemos por viaje a remar de un lado al otro del río:

a) ¿Cuál es el mínimo número de viajes que habrá que hacer para que todas las personas crucen el río? Explica cómo has llegado al resultado.

b) ¿Y si hubiera 8 adultos y 2 niños? ¿Y si hubiera 100 adultos y 2 niños? Explica cómo has llegado a tus respuestas.

c) Explica cómo podemos encontrar el mínimo número de viajes necesarios para cualquier número de adultos y 2 niños.

d) Si ahora, en una de las orillas hay 4 adultos y 3 niños ¿cuál es el número mínimo de viajes que habrá que hacer para que todas las personas crucen el río? ¿Cómo los harías?

e) ¿Y si hubiera 8 adultos y 3 niños? ¿Y si hubiera 100 adultos y 3 niños? Explica cómo podemos encontrar el mínimo número de viajes necesarios para cualquier número de adultos y 3 niños.

f) Explica cómo podemos encontrar el mínimo número de viajes necesarios para cualquier número de adultos y cualquier número de niños.
Solución: Aquí.

Pulseras de Fibonacci

Prueba de selección para ESTALMAT 2016

Se dirige a una edad de: 11/13

Disponemos de muchas cuentas, numeradas del 0 al 7.

Tratamos de hacer pulseras, siguiendo unas reglas.

En cada pulsera, al sumar los números de dos cuentas consecutivas, debe dar el número de la que les sigue.

Si esa suma es mayor de 7, empezaremos a contar desde 0 de nuevo, es decir, si la suma da once, por ejemplo, la cuenta que pondremos será la 3, ya que el ocho es como la cuenta 0, el nueve será como el 1, el diez como el 2, y el once como el 3. En el momento que vuelvan a repetirse dos cuentas, podremos cerrar la pulsera.

Un ejemplo de pulsera sería la que aparece debajo de esta línea.

Indica todas las pulseras diferentes que pueden construirse, detallando por qué no pueden hacerse más.

Solución: Pulsa aquí.