Solución a caballeros y mentirosos

Problema 3 del segundo nivel de la Olimpiada de Mayo (2018)
Se dirige a una edad de: 12 años

Los 2018 residentes de un pueblo están estrictamente divididos en dos clases: caballeros, que siempre dicen la verdad, y mentirosos, que siempre mienten.

Cierto día todos los residentes se acomodaron alrededor de una circunferencia y cada uno de ellos anunció en voz alta “Mis dos vecinos, el de la izquierda y el de la derecha, son mentirosos”.

A continuación uno de los residentes abandonó el pueblo.

Los 2017 que quedaron se acomodaron nuevamente en una circunferencia (no necesariamente en el mismo orden que antes) y cada uno de ellos anunció en voz alta “Ninguno de mis vecinos, el de la izquierda y el de la derecha, es de mi misma clase”.

Determinar, si es posible, de qué clase es el residente que abandonó el pueblo, caballero o mentiroso.

Solución:
Continue reading Solución a caballeros y mentirosos

Caballeros y mentirosos

Problema 3 del segundo nivel de la Olimpiada de Mayo (2018)
Se dirige a una edad de: 12 años

Los 2018 residentes de un pueblo están estrictamente divididos en dos clases: caballeros, que siempre dicen la verdad, y mentirosos, que siempre mienten.

Cierto día todos los residentes se acomodaron alrededor de una circunferencia y cada uno de ellos anunció en voz alta “Mis dos vecinos, el de la izquierda y el de la derecha, son mentirosos”.

A continuación uno de los residentes abandonó el pueblo.

Los 2017 que quedaron se acomodaron nuevamente en una circunferencia (no necesariamente en el mismo orden que antes) y cada uno de ellos anunció en voz alta “Ninguno de mis vecinos, el de la izquierda y el de la derecha, es de mi misma clase”.

Determinar, si es posible, de qué clase es el residente que abandonó el pueblo, caballero o mentiroso.

Solución a distancia en decágono

Problema 3 del primer nivel de la Olimpiada de Mayo (2018)
Se dirige a una edad de: 12 años

Sea ABCDEFGHIJ un polígono regular de 10 lados que tiene todos sus vértices en un polígono regular de centro O y radio 5.

Las diagonales AD y BE se cortan en P, y las diagonales AH y BI se cortan en Q.

Calcular la medida del segmento PQ.

Solución:
Continue reading Solución a distancia en decágono

Solución a sucesión periódica y recursiva

Problema 2 de la Olimpiada Internacional (2018)
Se dirige a una edad de: 17-19 años

Hallar todos los enteros n mayores o iguales a 3 para los que existen números reales a, a, …, an + 2 tales que ai·ai + 1 + 1 = ai + 2 para i = 1, 2, …, n, y an + 1 = a, y an + 2 = a.

Solución:
Continue reading Solución a sucesión periódica y recursiva

Solución a tableros y dominós

Problema 4 de la Olimpiada Matemática Femenina Europea (EGMO 2018)
Se dirige a una edad de: 17 años

Un dominó es una ficha de 1 x 2 o de 2 x 1 cuadrados unitarios.

Sean n un entero mayor o igual que 3. Se ponen dominós en un tablero de n x n casillas de tal manera que cada dominó cubre exactamente dos casillas del tablero sin superponerse (en otras palabras, sin traslaparse).

El valor de una fila o columna es el número de dominós que cubren al menos una casilla de esta fila o columna.

Una configuración de dominós se llama balanceada si existe algún entero k mayor o igual que 1 tal que cada fila y cada columna tiene valor k.

Demuestre que existe una configuración balanceada para cada n mayor o igual que 3, y encuentre el mínimo número de dominós necesarios para una tal configuración.

Solución:
Continue reading Solución a tableros y dominós

Tableros y dominós

Problema 4 de la Olimpiada Matemática Femenina Europea (EGMO 2018)
Se dirige a una edad de: 17 años

Un dominó es una ficha de 1 x 2 o de 2 x 1 cuadrados unitarios.

Sean n un entero mayor o igual que 3. Se ponen dominós en un tablero de n x n casillas de tal manera que cada dominó cubre exactamente dos casillas del tablero sin superponerse (en otras palabras, sin traslaparse).

El valor de una fila o columna es el número de dominós que cubren al menos una casilla de esta fila o columna.

Una configuración de dominós se llama balanceada si existe algún entero k mayor o igual que 1 tal que cada fila y cada columna tiene valor k.

Demuestre que existe una configuración balanceada para cada n mayor o igual que 3, y encuentre el mínimo número de dominós necesarios para una tal configuración.

Solución: Aquí.

Solución a los polinomios del 2017 y del 2018

Problema 7 de la Olitele (Olimpiada Telemática de Cataluña) 2017
Se dirige a una edad de: 16-17 años

a) Para una función polinómica de segundo grado p(x) = x² + ax + b con coeficientes a y b enteros, existen dos números diferentes m y n que cumplen p(m) = p(n) = 2017. Demuestra que no existe ningún número entero z que cumpla p(z) = 2018.

b) Dar un ejemplo de una función polinómica q(x) con coeficientes enteros para la cual existan tres números enteros n, m y z que cumplan q(m) = q(n) = 2017 y q(z) = 2018.

c) Para una función polinómica de grado n f(x) = xn + … con coeficientes enteros, existen tres números enteros diferentes m, q y r, que cumplen f(m) = f(q) = f(r) = 2017. Demuestra que no puede haber ningún número entero z que cumpla f(z) = 2018.

Solución: Continue reading Solución a los polinomios del 2017 y del 2018

Los Polinomios del 2017 y del 2018

Problema 7 de la Olitele (Olimpiada Telemática de Cataluña) 2017
Se dirige a una edad de: 16-17 años

a) Para una función polinómica de segundo grado p(x) = x² + ax + b con coeficientes a y b enteros, existen dos números diferentes m y n que cumplen p(m) = p(n) = 2017. Demuestra que no existe ningún número entero z que cumpla p(z) = 2018.

b) Dar un ejemplo de una función polinómica q(x) con coeficientes enteros para la cual existan tres números enteros n, m y z que cumplan q(m) = q(n) = 2017 y q(z) = 2018.

c) Para una función polinómica de grado n f(x) = xn + … con coeficientes enteros, existen tres números enteros diferentes m, q y r, que cumplen f(m) = f(q) = f(r) = 2017. Demuestra que no puede haber ningún número entero z que cumpla f(z) = 2018.

Solución: Aquí.