Home » Olimpiadas (Page 60)

Category Archives: Olimpiadas

Hermanos a pares

Problema 5 del nivel B fase comarcal de la Olimpiada de la Comunidad Valenciana 2018
Se dirige a una edad de: 13-15 años

Un grupo de jóvenes está formado por 5 pares de hermanos. Cada uno de los 10 jóvenes tiene una edad diferente comprendida entre 4 y 13 años (incluidas ambas edades).

Las sumas de las edades de las parejas de hermanos son 10, 13, 17, 22 y 23. Si Juan tiene 9 años, ¿qué edad tiene su hermano?

Solución: Aquí.

Solución a distancias en un paralelogramo

Problema 4 del segundo nivel de la Olimpiada de Mayo (2018)
Se dirige a una edad de: 14 años

En un paralelogramo ABCD, sea M el punto del lado BC tal que MC = 2BM y sea N el punto del lado CD tal que NC = 2DN.
Si la distancia del punto B a la recta AM es 3, calcular la distancia del punto N a la recta AM.

Solución:
(more…)

Distancias en un paralelogramo

Problema 4 del segundo nivel de la Olimpiada de Mayo (2018)
Se dirige a una edad de: 14 años

En un paralelogramo ABCD, sea M el punto del lado BC tal que MC = 2BM y sea N el punto del lado CD tal que NC = 2DN.
Si la distancia del punto B a la recta AM es 3, calcular la distancia del punto N a la recta AM.

Solución: Aquí.

Solución a siete números enteros

Problema 4 del primer nivel de la Olimpiada de Mayo (2018)
Se dirige a una edad de: 12 años

Ana debe escribir 7 enteros positivos, no necesariamente distintos, alrededor de una circunferencia de manera que se cumplan las siguientes condiciones:

La suma de los siete números es igual a 36.

Si dos números son vecinos la diferencia entre el mayor y el menor es igual a 2 o 3.

Hallar el máximo valor del mayor de los números que puede escribir Ana.

Solución:
(more…)

Siete números enteros

Problema 4 del primer nivel de la Olimpiada de Mayo (2018)
Se dirige a una edad de: 12 años

Ana debe escribir 7 enteros positivos, no necesariamente distintos, alrededor de una circunferencia de manera que se cumplan las siguientes condiciones:

La suma de los siete números es igual a 36.

Si dos números son vecinos la diferencia entre el mayor y el menor es igual a 2 o 3.

Hallar el máximo valor del mayor de los números que puede escribir Ana.

Solución: Aquí.

Solución a productos de un conjunto

Problema 2 de la Olimpiada Matemática Femenina Europea (EGMO 2018)
Se dirige a una edad de: 17 años

Considere el conjunto A = {1 + 1/k / k = 1, 2, 3,…}.

a) Demuestre que todo entero x ≥ 2 puede ser escrito como producto de uno o más elementos de A, no necesariamente distintos.

b) Para todo entero x ≥ 2, sea f(x) el menor entero tal que x puede ser escrito como f(x) elementos de A, no necesariamente distintos.

Demuestre que existen infinitos pares (x, y) de enteros, con x ≥ 2, y ≥ 2, tales que f(xy) < f(x) + f(y).

Nota: los pares (x, y), (z, t) son diferentes si x es diferente de z o y es diferente de t.
Solución:
(more…)

Productos de un conjunto

Problema 2 de la Olimpiada Matemática Femenina Europea (EGMO 2018)
Se dirige a una edad de: 17 años

Considere el conjunto A = {1 + 1/k / k = 1, 2, 3,…}.

a) Demuestre que todo entero x ≥ 2 puede ser escrito como producto de uno o más elementos de A, no necesariamente distintos.

b) Para todo entero x ≥ 2, sea f(x) el menor entero tal que x puede ser escrito como f(x) elementos de A, no necesariamente distintos.

Demuestre que existen infinitos pares (x, y) de enteros, con x ≥ 2, y ≥ 2, tales que f(xy) < f(x) + f(y).

Nota: los pares (x, y), (z, t) son diferentes si x es diferente de z o y es diferente de t.

Solución: Aquí.

Solución a caballeros y mentirosos

Problema 3 del segundo nivel de la Olimpiada de Mayo (2018)
Se dirige a una edad de: 12 años

Los 2018 residentes de un pueblo están estrictamente divididos en dos clases: caballeros, que siempre dicen la verdad, y mentirosos, que siempre mienten.

Cierto día todos los residentes se acomodaron alrededor de una circunferencia y cada uno de ellos anunció en voz alta “Mis dos vecinos, el de la izquierda y el de la derecha, son mentirosos”.

A continuación uno de los residentes abandonó el pueblo.

Los 2017 que quedaron se acomodaron nuevamente en una circunferencia (no necesariamente en el mismo orden que antes) y cada uno de ellos anunció en voz alta “Ninguno de mis vecinos, el de la izquierda y el de la derecha, es de mi misma clase”.

Determinar, si es posible, de qué clase es el residente que abandonó el pueblo, caballero o mentiroso.

Solución:
(more…)

Caballeros y mentirosos

Problema 3 del segundo nivel de la Olimpiada de Mayo (2018)
Se dirige a una edad de: 12 años

Los 2018 residentes de un pueblo están estrictamente divididos en dos clases: caballeros, que siempre dicen la verdad, y mentirosos, que siempre mienten.

Cierto día todos los residentes se acomodaron alrededor de una circunferencia y cada uno de ellos anunció en voz alta “Mis dos vecinos, el de la izquierda y el de la derecha, son mentirosos”.

A continuación uno de los residentes abandonó el pueblo.

Los 2017 que quedaron se acomodaron nuevamente en una circunferencia (no necesariamente en el mismo orden que antes) y cada uno de ellos anunció en voz alta “Ninguno de mis vecinos, el de la izquierda y el de la derecha, es de mi misma clase”.

Determinar, si es posible, de qué clase es el residente que abandonó el pueblo, caballero o mentiroso.

Solución a distancia en decágono

Problema 3 del primer nivel de la Olimpiada de Mayo (2018)
Se dirige a una edad de: 12 años

Sea ABCDEFGHIJ un polígono regular de 10 lados que tiene todos sus vértices en un polígono regular de centro O y radio 5.

Las diagonales AD y BE se cortan en P, y las diagonales AH y BI se cortan en Q.

Calcular la medida del segmento PQ.

Solución:
(more…)