Home » 2018 (Page 2)

Yearly Archives: 2018

Solución a hermanos a pares

Problema 5 del nivel B fase comarcal de la Olimpiada de la Comunidad Valenciana 2018
Se dirige a una edad de: 13-15 años

Un grupo de jóvenes está formado por 5 pares de hermanos. Cada uno de los 10 jóvenes tiene una edad diferente comprendida entre 4 y 13 años (incluidas ambas edades).

Las sumas de las edades de las parejas de hermanos son 10, 13, 17, 22 y 23. Si Juan tiene 9 años, ¿qué edad tiene su hermano?

Solución:
(more…)

Hermanos a pares

Problema 5 del nivel B fase comarcal de la Olimpiada de la Comunidad Valenciana 2018
Se dirige a una edad de: 13-15 años

Un grupo de jóvenes está formado por 5 pares de hermanos. Cada uno de los 10 jóvenes tiene una edad diferente comprendida entre 4 y 13 años (incluidas ambas edades).

Las sumas de las edades de las parejas de hermanos son 10, 13, 17, 22 y 23. Si Juan tiene 9 años, ¿qué edad tiene su hermano?

Solución: Aquí.

Solución a cruzando el río

Problema 1 de la prueba de selección de Estalmat 2018
Se dirige a una edad de: 11-12 años

En una de las orillas de un río hay 3 adultos, 2 niños y una barca de remos muy pequeña.

Queremos que todas las personas crucen el río utilizando la barca.

En la barca sólo caben o bien un solo adulto o bien 2 niños.

Todos saben remar y está permitido que un niño vaya solo en la barca.

Entendemos por viaje a remar de un lado al otro del río:

a) ¿Cuál es el mínimo número de viajes que habrá que hacer para que todas las personas crucen el río? Explica cómo has llegado al resultado.

b) ¿Y si hubiera 8 adultos y 2 niños? ¿Y si hubiera 100 adultos y 2 niños? Explica cómo has llegado a tus respuestas.

c) Explica cómo podemos encontrar el mínimo número de viajes necesarios para cualquier número de adultos y 2 niños.

d) Si ahora, en una de las orillas hay 4 adultos y 3 niños ¿cuál es el número mínimo de viajes que habrá que hacer para que todas las personas crucen el río? ¿Cómo los harías?

e) ¿Y si hubiera 8 adultos y 3 niños? ¿Y si hubiera 100 adultos y 3 niños? Explica cómo podemos encontrar el mínimo número de viajes necesarios para cualquier número de adultos y 3 niños.

f) Explica cómo podemos encontrar el mínimo número de viajes necesarios para cualquier número de adultos y cualquier número de niños.
Solución:
(more…)

Cruzando el río

Problema 1 de la prueba de selección de Estalmat 2018
Se dirige a una edad de: 11-12 años

En una de las orillas de un río hay 3 adultos, 2 niños y una barca de remos muy pequeña.

Queremos que todas las personas crucen el río utilizando la barca.

En la barca sólo caben o bien un solo adulto o bien 2 niños.

Todos saben remar y está permitido que un niño vaya solo en la barca.

Entendemos por viaje a remar de un lado al otro del río:

a) ¿Cuál es el mínimo número de viajes que habrá que hacer para que todas las personas crucen el río? Explica cómo has llegado al resultado.

b) ¿Y si hubiera 8 adultos y 2 niños? ¿Y si hubiera 100 adultos y 2 niños? Explica cómo has llegado a tus respuestas.

c) Explica cómo podemos encontrar el mínimo número de viajes necesarios para cualquier número de adultos y 2 niños.

d) Si ahora, en una de las orillas hay 4 adultos y 3 niños ¿cuál es el número mínimo de viajes que habrá que hacer para que todas las personas crucen el río? ¿Cómo los harías?

e) ¿Y si hubiera 8 adultos y 3 niños? ¿Y si hubiera 100 adultos y 3 niños? Explica cómo podemos encontrar el mínimo número de viajes necesarios para cualquier número de adultos y 3 niños.

f) Explica cómo podemos encontrar el mínimo número de viajes necesarios para cualquier número de adultos y cualquier número de niños.
Solución: Aquí.

Solución a distancias en un paralelogramo

Problema 4 del segundo nivel de la Olimpiada de Mayo (2018)
Se dirige a una edad de: 14 años

En un paralelogramo ABCD, sea M el punto del lado BC tal que MC = 2BM y sea N el punto del lado CD tal que NC = 2DN.
Si la distancia del punto B a la recta AM es 3, calcular la distancia del punto N a la recta AM.

Solución:
(more…)

Distancias en un paralelogramo

Problema 4 del segundo nivel de la Olimpiada de Mayo (2018)
Se dirige a una edad de: 14 años

En un paralelogramo ABCD, sea M el punto del lado BC tal que MC = 2BM y sea N el punto del lado CD tal que NC = 2DN.
Si la distancia del punto B a la recta AM es 3, calcular la distancia del punto N a la recta AM.

Solución: Aquí.

Solución a siete números enteros

Problema 4 del primer nivel de la Olimpiada de Mayo (2018)
Se dirige a una edad de: 12 años

Ana debe escribir 7 enteros positivos, no necesariamente distintos, alrededor de una circunferencia de manera que se cumplan las siguientes condiciones:

La suma de los siete números es igual a 36.

Si dos números son vecinos la diferencia entre el mayor y el menor es igual a 2 o 3.

Hallar el máximo valor del mayor de los números que puede escribir Ana.

Solución:
(more…)

Siete números enteros

Problema 4 del primer nivel de la Olimpiada de Mayo (2018)
Se dirige a una edad de: 12 años

Ana debe escribir 7 enteros positivos, no necesariamente distintos, alrededor de una circunferencia de manera que se cumplan las siguientes condiciones:

La suma de los siete números es igual a 36.

Si dos números son vecinos la diferencia entre el mayor y el menor es igual a 2 o 3.

Hallar el máximo valor del mayor de los números que puede escribir Ana.

Solución: Aquí.

Solución a productos de un conjunto

Problema 2 de la Olimpiada Matemática Femenina Europea (EGMO 2018)
Se dirige a una edad de: 17 años

Considere el conjunto A = {1 + 1/k / k = 1, 2, 3,…}.

a) Demuestre que todo entero x ≥ 2 puede ser escrito como producto de uno o más elementos de A, no necesariamente distintos.

b) Para todo entero x ≥ 2, sea f(x) el menor entero tal que x puede ser escrito como f(x) elementos de A, no necesariamente distintos.

Demuestre que existen infinitos pares (x, y) de enteros, con x ≥ 2, y ≥ 2, tales que f(xy) < f(x) + f(y).

Nota: los pares (x, y), (z, t) son diferentes si x es diferente de z o y es diferente de t.
Solución:
(more…)

Productos de un conjunto

Problema 2 de la Olimpiada Matemática Femenina Europea (EGMO 2018)
Se dirige a una edad de: 17 años

Considere el conjunto A = {1 + 1/k / k = 1, 2, 3,…}.

a) Demuestre que todo entero x ≥ 2 puede ser escrito como producto de uno o más elementos de A, no necesariamente distintos.

b) Para todo entero x ≥ 2, sea f(x) el menor entero tal que x puede ser escrito como f(x) elementos de A, no necesariamente distintos.

Demuestre que existen infinitos pares (x, y) de enteros, con x ≥ 2, y ≥ 2, tales que f(xy) < f(x) + f(y).

Nota: los pares (x, y), (z, t) son diferentes si x es diferente de z o y es diferente de t.

Solución: Aquí.