Home » Olimpiada Matemática Española (Page 2)
Category Archives: Olimpiada Matemática Española
Solución a “Dos polinomios muy parecidos”
Problema 2 de la Fase Local de la Olimpiada Española de Matemáticas 2024 (viernes) Se dirige a una edad de: 16-17 años
Sea P(x) un polinomio de grado 5, y sean a y b dos números reales diferentes de 0.
Supongamos que el resto de P(x) al dividirlo por x³ + ax + b es igual al resto al dividirlo por x³ + ax² + b.
Determinar el valor de a + b.
Solución:
(more…)
Dos polinomios muy parecidos
Problema 2 de la Fase Local de la Olimpiada Española de Matemáticas 2024 (viernes) Se dirige a una edad de: 16-17 años
Sea P(x) un polinomio de grado 5, y sean a y b dos números reales diferentes de 0.
Supongamos que el resto de P(x) al dividirlo por x³ + ax + b es igual al resto al dividirlo por x³ + ax² + b.
Determinar el valor de a + b.
Solución: Aquí.
Solución a “Sumas de números formadas por unos”
Problema 1 de la Fase Local de la Olimpiada Española de Matemáticas 2024 (viernes) Se dirige a una edad de: 16-17 años
Hallar el menor entero positivo n tal que la suma de n sumandos
A(n) = 1 + 11 + 111 + … + 11…1
es divisible por 45.
Solución:
(more…)
Sumas de números formados por unos
Problema 1 de la Fase Local de la Olimpiada Española de Matemáticas 2024 (viernes) Se dirige a una edad de: 16-17 años
Hallar el menor entero positivo n tal que la suma de n sumandos
A(n) = 1 + 11 + 111 + … + 11…1
es divisible por 45.
Solución. Aquí.
Solución a ecuación funcional
Problema 8 de la Fase Local de la Olimpiada Española de Matemáticas 2023 (sábado) Se dirige a una edad de: 16-17 años
Encuentra todas las funciones reales de variable real que cumplen que f(x + f(y + f(x + f(y + f(x))))) = 3x + 2y para cualesquiera x, y.
Solución:
(more…)
Ecuación funcional
Problema 8 de la Fase Local de la Olimpiada Española de Matemáticas 2023 (sábado) Se dirige a una edad de: 16-17 años
Encuentra todas las funciones reales de variable real que cumplen que f(x + f(y + f(x + f(y + f(x))))) = 3x + 2y para cualesquiera x, y.
Solución: Aquí.
Solución a dividiendo un rectángulo
Problema 7 de la Fase Local de la Olimpiada Española de Matemáticas 2023 (sábado) Se dirige a una edad de: 16-17 años
Sea n >= 2 un entero positivo.
Dividimos un rectángulo de n·(n + 1) en piezas rectangulares: dos de 1·1, dos de 1·2, y así sucesivamente hasta dos de 1·n, con la propiedad de que para cada k >= 2, una pieza 1·k tiene los lados largos horizontales y la otra verticales.
Demostrar que, con estas condiciones, las dos piezas 1·1 comparten un lado.
Solución:
(more…)
Dividiendo un rectángulo
Problema 7 de la Fase Local de la Olimpiada Española de Matemáticas 2023 (sábado) Se dirige a una edad de: 16-17 años
Sea n >= 2 un entero positivo.
Dividimos un rectángulo de n·(n + 1) en piezas rectangulares: dos de 1·1, dos de 1·2, y así sucesivamente hasta dos de 1·n, con la propiedad de que para cada k >= 2, una pieza 1·k tiene los lados largos horizontales y la otra verticales.
Demostrar que, con estas condiciones, las dos piezas 1·1 comparten un lado.
Solución: Aquí.
Solución a ecuación exponencial
Problema 6 de la Fase Local de la Olimpiada Española de Matemáticas 2023 (viernes mañana) Se dirige a una edad de: 16-17 años
Encontrar todos los enteros positivos a, b, c >= 1 que satisfacen la igualdad:
2^a + 7^b = c² + 4
Solucion:
(more…)
Ecuación exponencial
Problema 6 de la Fase Local de la Olimpiada Española de Matemáticas 2023 (viernes mañana) Se dirige a una edad de: 16-17 años
Encontrar todos los enteros positivos a, b, c >= 1 que satisfacen la igualdad:
2^a + 7^b = c² + 4
Solución: Aquí.