Home » 2015

Yearly Archives: 2015

abril 2020
« Mar    

Estimating difficulty of learning activities in design stages: A novel application of Neuroevolution

Estimating difficulty of learning activities in design stages: A novel application of Neuroevolution
Francisco José Gallego Durán
Tesis Doctoral
Director: Dr. Faraón Llorens Largo
Universidad de Alicante
Alicante, 2015

Acceso al documento completo en RUA



In every learning or training environment, learning activities are the basis for practical learning. Learners need to practice in order to acquire new abilities and perfect those previously gained. The key for an optimized learning process is correctly assigning learning activities to learners. Each learner has specific needs depending on previous knowledge and personal skills. A correct assignment for a given learner would be selecting a learning activity that closely matches learner’s skills and knowledge. This brings up the concept of difficulty. Difficulty of a learning activity could be defined as the effort that a learner has to make to successfully complete the learning activity and obtain its associated learning outcomes. So, a difficult activity would simply require much effort to be successfully completed.
Learners presented with too difficult learning activities tend to abandon rather than performing required effort. This situation could be better understood as the learner perceiving the activity as an unbalanced invested-return ratio: too much effort for the expected learning outcomes. A similar case occurs when difficulty is too easy. In that case, effort perceived is low, but learning outcomes are perceived as even lower. If the activity does not pose a challenge for the learner is because the learner already masters the involved abilities, and that makes learning outcomes tend to zero. Both situations drive learners to losing interest.
To prevent this from happening, teachers and trainers estimate difficulties of learning activities based on their own experience. However, this procedure suffers an effect called the Curse of Knowledge: every person that masters an activity, becomes biased for estimating the effort required to master that same activity. Therefore, correctly estimating difficulties of learning activities is an error-prone task when expert-knowledge is used to estimate them. But estimating difficulty without carrying out the learning activity would probably yield even worse results.
In order to escape from this error-prone cycle, the first solution would be to measure the effort involved in successfully completing the learning activity. For that purpose, an objective effort measurement should be defined. This approach has been followed by many previous works and it is the general approach in the field of Learning Analytics. Although this approach yields many types of considerable results, it has an important drawback. It is impossible to have a measure without learners performing the learning activity. Therefore, at design stages of the learning activity, how does the designer know whether the activity is too hard/too easy? Is there a way to have an valid estimation of difficulty of a learning activity before handing it to learners?
This work proposes a new approach to tackle this problem. The approach consists in training a Machine Learning algorithm and measure the “effort” the algorithm requires to find successful solutions to learning activities. The “effort” will be the learning cost: the time the algorithm requires for training. After that, results obtained from training the Machine Learning algorithm will be compared to results measured from actual learners. Under the assumption that learning costs for Machine Learning algorithms and those for learners have some kind of correlation, results from comparing them should show that correlation. If that were the case, then the learning cost that Machine Learning algorithms invest in training could be used as an estimation of the difficulty of the learning activity for learners.
In order to implement this approach and to obtain experimental data, two Neuroevolution algorithms have been selected for the Machine Learning part: Neuroevolution of Augmenting Topologies (NEAT) and Hypercube-based Neuroevolution of Augmenting Topologies (HyperNEAT).
Implementing this proposed approach has yielded several contributions that are presented in this work:
• A new definition of difficulty as a function, based on the progress made over time as an inverse measure of the effort/learning cost.
• A similarity measure to compare Machine Learning results to those of learners and know the accuracy of the estimation.
• A game called PLMan that is used as learning activity in the exper- iments. It is a Pacman-like game composed of up to 220 different mazes, that is used to teach Prolog programming, Logics and a light introduction to Artificial Intelligence.
• An application of NEAT and HyperNEAT to learn to automatically solve PLMan mazes.
• A novel application of Neuroevolution to estimate difficulty of learning activities at design stages.
Experimental results confirm that there exists a correlation between learning costs of Neuroevolution and those of students. Goodness of the presented results is limited by the scope of this study and its empirical nature. Nevertheless, they are greatly significant and may open up a new line of research on the relation between Machine Learning and humans with respect to the process of learning itself.

Teaching as a fractal: from experience to model

Teaching as a fractal: from experience to model
Patricia Compañ-Rosique, Rafael Molina-Carmona, Rosana Satorre-Cuerda y Faraón Llorens-Largo
Universidad de Alicante
EKS (Education in the Knowledge Society).
Vol. 16, Núm. 4 (2015).


The aim of this work is to improve students’ learning by designing a teaching model that seeks to increase student motivation to acquire new knowledge. To design the model, the methodology is based on the study of the students’ opinion on several aspects we think importantly affect the quality of teaching (such as the overcrowded classrooms, time intended for the subject or type of classroom where classes are taught), and on our experience when performing several experimental activities in the classroom (for instance, peer reviews and oral presentations). Besides the feedback from the students, it is essential to rely on the experience and reflections of lecturers who have been teaching the subject several years. This way we could detect several key aspects that, in our opinion, must be considered when de-signing a teaching proposal: motivation, assessment, progressiveness and autonomy. As a result we have obtained a teaching model based on instructional design as well as on the prin-ciples of fractal geometry, in the sense that different levels of abstraction for the various train-ing activities are presented and the activities are self-similar, that is, they are decomposed again and again. At each level, an activity decomposes into a lower level tasks and their cor-responding evaluation. With this model the immediate feedback and the student motivation are encouraged. We are convinced that a greater motivation will suppose an increase in the student’s working time and in their performance. Although the study has been done on a subject, the results are fully generalizable to other subjects.

JENUI 2016 (XXII Jornadas sobre la Enseñanza Universitaria de la Informática): llamada a la participación

JENUI 2016
XXII Jornadas sobre la Enseñanza Universitaria de la Informática
Almería, 5-8 de Julio de 2016
Universidad de Almería

Llamada a la participación


El objetivo de las XXII Jornadas sobre la Enseñanza Universitaria de la Informática (JENUI 2016), promovidas por la Asociación de Enseñantes Universitarios de la Informática (AENUI) y organizadas por el Departamento de Informática de la Universidad de Almería, es promover el contacto, el intercambio y la discusión de conocimientos y experiencias entre profesores universitarios de Informática y grupos de investigación; debatir sobre el contenido de los programas y los métodos pedagógicos empleados; así como materializar un foro de debate en el que presentar temas y enfoques innovadores orientados a mejorar la docencia de la Informática en las universidades.

Fechas importantes

07/12/2015 al 15/01/2016: Envío de resúmenes.
11/02/2016: Fecha límite para envío de trabajos.
19/04/2016: Notificación de trabajos aceptados.
17/05/2016: Fecha límite para envío de trabajos definitivos.
11/04/2016 al 06/06/2016: Inscripción temprana.
07/06/2016 al 03/07/2016: Inscripción normal.
05/07/2016: Taller JENUI 2016
06/07/2016 al 08/07/2016: JENUI 2016

Gamificación: insert coin to play again

Gamificación: insert coin to play again
Faraón Llorens
VI Jornada de Innovación Educativa
“Tendencias Pedagógicas Innovadoras y Tecnologías Digitales en la Educación Superior”
Dirección de Innovación Educativa
Universidad Nacional Autónoma de Honduras
3 de diciembre de 2015


Despertad al diplodocus

Despertad al diplodocus.
Una conspiración educativa para transformar la escuela … y todo lo demás

José Antonio Marina



Enlaces de interés:
Sito web de José Antonio Marina
Página web del libro
Sito web del libro


El debate más importante para el futuro de nuestro país.

Frases entresacadas e ideas interesantes que puedo utilizar:

(Página 89)
“Vamos a emprender la ruta de la movilización educativa. Ya tenemos claros los objetivos a cinco años: conseguir que el 90% de la población escolar alcance el éxito educativo, que no es sólo evitar el abandono escolar, sino alcanzar las competencias necesarias y las condiciones para lograr la felicidad personal y colaborar a la felicidad social”

(Página 92)
“… el dogma de nuestra profesión es creer en la perfectibilidad de todas las personas …”

BencHEIT Workshop EUNIS 2015

BencHEIT Workshop
13th of November 2015
Pompeu Fabra University
Barcelona (Spain)


Reunión de trabajo para compartir experiencias IT Benchmarking. Participamos el equipo GTI4U con la experiencia española UNIVERSITIC.

foto 1

Applying Neuroevolution to Estimate the Difficulty of Learning Activities

Applying Neuroevolution to Estimate the Difficulty of Learning Activities
Francisco J. Gallego-Durán , Carlos J. Villagrá-Arnedo, Rafael Molina-Carmona, Faraón Llorens-Largo
Departamento de Ciencia de la Computación e Inteligencia Artificial
Universidad de Alicante

16th Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2015)
November 9–12, 2015, Albacete, Spain
Acceso a las Actas

Learning practical abilities through exercises is a key aspect of any educational environment. To optimize learning, exercise difficulty should match abilities of the learner so that the exercises are neither so easy to bore learners nor so difficult to discourage them. The process of assigning a level of difficulty to an exercise is traditionally manual, so it is subject to teachers’ bias. Our hypothesis is about the possibility of establishing a relation between human and machine learning. In other words, we wonder if exercises that are difficult to be solved by a person are also difficult to be solved by the computer, and vice versa.
To try to bring some light to this problem we have used a game for learning Computational Logic, to build neuroevolutionary algorithms to estimate exercise difficulty at the moment of exercise creation, without previous user data. The method is based on measuring the computational cost that neuroevolutionary algorithms take to find a solution and establishing similarities with previously gathered information from learners.
Results show that there is a high degree of similarity between learner difficulty to solve different exercises and neuroevolutionary algorithms performance, suggesting that the approach is valid.

Número especial de ReVisión: Investigación sobre educación universitaria en informática con proyección internacional

Queridos compañeros y compañeras:
es el momento de abordar del número 2 del volumen 9 de ReVisión, que como sabéis, es un número especial que se publicará en mayo del 2016. En esta ocasión estará dedicado a la “Investigación sobre educación universitaria en informática con proyección internacional” y será coordinado por José Miguel Blanco (Universidad del Pais Vasco/Euskal Herriko Unibersitatea).
La creación de una comunidad de interés en torno a la mejora de la actividad docente universitaria en informática, devino -hace ya años- en un grupo significativo de docentes que han orientado, en parte o en su totalidad, su actividad investigadora a la concepción, diseño y desarrollo de métodos, técnicas y herramientas que tienen como fin la mejora de la enseñanza universitaria en informática. Tanto JENUI como ReVision han acogido diversas aportaciones relacionadas con los procesos de proyección de los resultados de estos trabajos de investigación. Se trata, en este número, de recoger, de forma monográfica, un conjunto de trabajos que aporten una visión de métodos, procesos y resultados obtenidos en este ámbito que hayan tenido una proyección internacional. El objetivo es facilitar una visión amplia de alternativas que han logrado un reconocimiento externo, tanto para valorar la relevancia del camino realizado, como para orientar los pasos de quienes quieran desarrollar, en este campo de trabajo, una actividad investigadora con un impacto significativo en su carrera profesional.
Os animamos a que enviéis un artículo sobre este tema. Para ello deberéis hacernos llegar, antes del 23 de enero, el título y un resumen extendido del trabajo a exponer.

Fechas de interés:
– Envío resúmenes: 23 enero 2016
– Aceptación: 6 febrero 2016
– Envío artículos: 1 abril 2016
– Revisión: 15 abril 2014
– Envío artículo definitivo: 29 abril 2016
– Publicación: 15 de mayo de 2016

Deseamos que esta propuesta resulte de tu interés y consideres la posibilidad de participar en este número con vuestros trabajos. Por supuesto, te agradeceríamos que hagas extensiva esta invitación a cualquier persona que consideres adecuada a la vista del enfoque propuesto.

Deducción Automática

Sesión 5: Deducción Automática
Faraón Llorens Largo
26 de octubre de 2015
Bloque: Lógica
Asignatura: Matemáticas I
Grado en Ingeniería Multimedia (http://www.eps.ua.es/ingenieria-multimedia)
Universidad de Alicante

Deducción Natural (estrategias)

Sesión 4: Deducción Natural (estrategias)
Faraón Llorens Largo
13 de octubre de 2015
Bloque: Lógica
Asignatura: Matemáticas I
Grado en Ingeniería Multimedia (http://www.eps.ua.es/ingenieria-multimedia)
Universidad de Alicante