Home » Posts tagged 'aprendizaje adaptativo'

Tag Archives: aprendizaje adaptativo

septiembre 2020
M T W T F S S
 123456
78910111213
14151617181920
21222324252627
282930  

Time-Dependent Performance Prediction System for Early Insight in Learning Trends

Time-Dependent Performance Prediction System for Early Insight in Learning Trends
Carlos Villagrá-Arnedo, Francisco Gallego-Durán, Faraón Llorens-Largo, Rosana Satorre-Cuerda, Patricia Compañ-Rosique, Rafael Molina-Carmona
International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
ISSN: 1989-1660
Volume 6, issue 2
2020
https://www.ijimai.org/journal/bibcite/reference/2775

DOI:10.9781/ijimai.2020.05.006

Abstract
Performance prediction systems allow knowing the learning status of students during a term and produce estimations on future status, what is invaluable information for teachers. The majority of current systems statically classify students once in time and show results in simple visual modes. This paper presents an innovative system with progressive, time-dependent and probabilistic performance predictions. The system produces by-weekly probabilistic classifications of students in three groups: high, medium or low performance. The system is empirically tested and data is gathered, analysed and presented. Predictions are shown as point graphs over time, along with calculated learning trends. Summary blocks are with latest predictions and trends are also provided for teacher efficiency. Moreover, some methods for selecting best moments for teacher intervention are derived from predictions. Evidence gathered shows potential to give teachers insights on students’ learning trends, early diagnose learning status and selecting best moment for intervention.

Keywords
E-learning, Education, Learning Analytics, Learning Management Systems, Prediction, Support Vector Machine

Computational Characterization of Activities and Learners in a Learning System

Computational Characterization of Activities and Learners in a Learning System
Alberto Real-Fernández, Rafael Molina-Carmona and Faraón Llorens-Largo
Applied Sciences
ISSN: 2076-3417
Special Issue “Smart Learning”
Volume 10, issue 7
2020
https://www.mdpi.com/2076-3417/10/7/2208

Abstract
For a technology-based learning system to be able to personalize its learning process, it must characterize the learners. This can be achieved by storing information about them in a feature vector. The aim of this research is to propose such a system. In our proposal, the students are characterized based on their activity in the system, so learning activities also need to be characterized. The vectors are data structures formed by numerical or categorical variables such as learning style, cognitive level, knowledge type or the history of the learner’s actions in the system. The learner’s feature vector is updated considering the results and the time of the activities performed by the learner. A use case is also presented to illustrate how variables can be used to achieve different effects on the learning of individuals through the use of instructional strategies. The most valuable contribution of this proposal is the fact that students are characterized based on their activity in the system, instead of on self-reporting. Another important contribution is the practical nature of the vectors that will allow them to be computed by an artificial intelligence algorithm.

Keywords
smart learning; learner characterization; student characterization; feature vector; adaptive learning

Se acabó el promedio

Se acabó el promedio.
Cómo tener éxito en un mundo que valora la uniformidad

Todd Rose
Harper Collins Español (www.harpercollinsespanol.com)

https://harpercollinsespanol.com/libros/libro/9780718087494/se-acabo-el-promedio/

Frases entresacadas e ideas interesantes que puedo utilizar:

(Página 73)
“Las matemáticas del promedianismo son conocidas como estadística. /…/ Pero para comprender con exactitud a los individuos uno debe volverse a una clase muy diferente de matemáticas, conocidas como sistemas dinámicos“.

(Página 74)
“El principal método de investigación del promedianismo es suma, después analiza: primero combina a mucha gente junta y busca patrones en el grupo. Luego usa los patrones de ese grupo (como promedios y otras estadísticas) para analizar y modelar los individuos. En vez de eso, la ciencia del individuo enseña a los científicos a analizar y después sumar: primero, busca los patrones dentro de cada individuo. Luego busca modos de combinar esos patrones individuales en la perspectiva colectiva”.

(Página 77)
“Existe una dificultad en este enfoque individual: requiere una gran cantidad de datos, muchos más que los enfoques promedianos /…/ No obstante, ahora vivimos en la era digital, y en la última década la capacidad para adquirir, almacenar y manipular cantidades masivas de datos individuales se ha convertido en algo práctico y común”.

Los tres principios de la individualidad: principio de la irregularidad (casi cualquier característica humana significativa consiste en múltiples dimensiones), principio del contexto (los rasgos son un mito) y principio de las sendas (todos andamos por el camino menos transitado).

(Página 87)
Principio de la irregularidad. “No podemos aplicar el pensamiento unidimensional para entender algo que es complejo e “irregular”. Una cualidad es irregular si cumple dos criterios. Primero, debe estar compuesta de múltiples dimensiones. Segundo, esas dimensiones deben estar débilmente relacionadas entre sí”.

(Página 112)
Principio del contexto. “La conducta individual no se puede explicar o predecir aparte de una situación particular, y que la influencia de una situación no se puede especificar sin mencionar al individuo que la está experimentando”.

(Página 138)
Principio de las sendas. “Hace dos afirmaciones importantes. Primero, en todos los aspectos de nuestra vida y para cualquier objetivo dado hay muchas maneras igualmente válidas de alcanzar el mismo resultado; y, segundo, la senda particular que resulta óptima para ti depende de tu propia individualidad”.

Capítulo 8. Reemplazar el promedio en la educación superior (pag. 177-195)

(Página 182-183)
“Transformar la estructura promedianista de nuestro sistema actual en un sistema que valore al estudiante individual requiere que adoptemos estos tres conceptos clave:
– Garantizar las credenciales, no los diplomas.
– Reemplazar notas por competencias.
– Dejar que los estudiantes determinen su senda educativa.”

(Página 200)
“Esto significa que si queremos igualdad de oportunidades para todo el mundo, si queremos una sociedad donde cada uno de nosotros tenga las mismas oportunidades de vivir al máximo de su pontencial, entonces debemos crear instituciones profesionales, educativas y sociales que sean responsables con la individualidad”

(Página 202)
“Si estamos buscando la institución donde implementar el ajuste igualitario tendría el mayor impacto inmediato, el lugar para empezar está claro: la educación pública. A pesar del hecho de que el “aprendizaje personalizado” es la expresión que está de moda hoy en la educación, y a pesar de los esfuerzos de muchas organizaciones por buscar cambiar el sistema, casi todo el sistema educativo tradicional sigue diseñado para asegurarse de que los estudiantes reciben exactamente la misma experiencia estandarizada.”

Smart Learning – Grupo de Investigación en Tecnologías Inteligentes para el Aprendizaje (logo)

Smart Learning
Grupo de Investigación en Tecnologías Inteligentes para el Aprendizaje
https://cvnet.cpd.ua.es/curriculum-breve/grp/es/grupo-de-investigacion-en-tecnologias-inteligentes-para-el-aprendizaje-(smart-learning)/687

Ya tenemos logo. ¿Os gusta?