Detección precoz de dificultades en el aprendizaje. Herramienta para la predicción del rendimiento de los estudiantes
Carlos J. Villagrá-Arnedo, Francisco J. Gallego-Durán, Faraón Llorens-Largo, Patricia Compañ-Rosique, Rosana Satorre-Cuerda, Rafael Molina-Carmona
Departamento de Ciencia de la Computación e Inteligencia Artificial
Universidad de Alicante
III Congreso Internacional sobre Aprendizaje, Innovación y Competitividad (CINAIC 2015)
Madrid, 14-16 de Octubre de 2015
http://www.cinaic.com
Acceso a las Actas
Resumen
Inspirados por las estrategias de detección precoz aplicadas en medicina, proponemos el diseño y construcción de un sistema de predicción que permita detectar los problemas de aprendizaje de los estudiantes de forma temprana. Partimos de un sistema gamificado para el aprendizaje de Lógica Computacional, del que se recolectan masivamente datos de uso y, sobre todo, resultados de aprendizaje de los estudiantes en la resolución de problemas. Todos estos datos se analizan utilizando técnicas de Machine Learning que ofrecen, como resultado, una predicción del rendimiento de cada alumno. La información se presenta semanalmente en forma de un gráfico de progresión, de fácil interpretación pero con información muy valiosa. El sistema resultante tiene un alto grado de automatización, es progresivo, ofrece resultados desde el principio del curso con predicciones cada vez más precisas, utiliza resultados de aprendizaje y no solo datos de uso, permite evaluar y hacer predicciones sobre las competencias y habilidades adquiridas y contribuye a una evaluación realmente formativa. En definitiva, permite a los profesores guiar a los estudiantes en una mejora de su rendimiento desde etapas muy tempranas, pudiendo reconducir a tiempo los posibles fracasos y motivando a los estudiantes.
Presentación