Home » Inteligencia artificial » Armas de destrucción matemática

junio 2020
M T W T F S S
1234567
891011121314
15161718192021
22232425262728
2930  

Armas de destrucción matemática

Armas de destrucción matemática.
Cómo el Big Data aumenta la desigualdad y amenaza la democracia

Cathy O’Neil
Capitán Swing (www.capitanswing.com)

https://capitanswing.com/libros/armas-de-destruccion-matematica/

https://weaponsofmathdestructionbook.com

Charla TED “La era de la fe ciega en los datos masivos ha de terminar” (https://www.ted.com/talks/cathy_o_neil_the_era_of_blind_faith_in_big_data_must_end).

Página de la autora: mathbabe.org

Frases entresacadas e ideas interesantes que puedo utilizar:

(Página 16)
“hay muchas premisas perniciosas camufladas bajo las matemáticas y se mantienen sin que nadie las verifique ni las cuestione.”

(Página 17)
“Los privilegiados, como veremos una y otra vez, son analizados por personas; las masas, por máquinas.”

(Página 21)
“pretendía movilizar a otros matemáticos contra el uso de estadísticas chapuceras y de modelos sesgados que crean sus propios bucles de retroalimentación perniciosos”

(Página 245)
“Con los mensajes políticos, como con la mayoría de ADM, la clave del problema está casi siempre en la finalidad. Si modificamos su propósito y, en lugar de chuparle la sangre a la gente, el objetivo es ayudarla, desarmamos el ADM… y puede que incluso se convierta en una fuerza del bien.”

(Página 254)
“¿Y cómo empezar ahora a regular los modelos matemáticos que dirigen cada vez más nuestras vidas? Yo sugeriría que el proceso comenzara con los programadores que crean los modelos. Al igual que los médicos, los científicos de datos deberían hacer un juramento hipocrático centrado en los posibles abusos y malinterpretaciones de sus modelos.”
(Emanuel Derman y Paul Wilmott, “The Financial Modeler´s Manifesto”, 7 de enero de 2009)
“- Recordaré que no he creado el mundo, y que este no satisface mis ecuaciones.
– Aunque emplee audazmente modelos para estimar valor, no me dejaré impresionar excesivamente por las matemáticas.
– Nunca sacrificaré la realidad por elegancia sin explicar por qué lo he hecho.
– Tampoco proporcionaré a quienes usen mis modelos una falsa sensación de seguridad sobre su precisión, sino que haré explícitos los supuestos y omisiones.
– Reconozco que mi trabajo puede tener enormes efectos sobre la sociedad y la economía, muchos de ellos más allá de mi comprensión.”
“Se trata de una buena base filosófica, pero la autorregulación y unos valores sólidos solo contendrán a los escrupulosos.”

(Página 266)
“Aunque el big data, si se maneja con prudencia, puede facilitar la comprensión profunda de muchos fenómenos, muchas de sus conclusiones serán disruptivas. Al fin y al cabo, el objetivo del big data es encontrar patrones que son invisibles al ojo humano. El reto al que se enfrentan los científicos de datos es comprender los ecosistemas que investigan y presentar no solo los problemas, sino también sus posibles soluciones.”

(Página 269)
“estos modelos no se construyen únicamente con datos, sino también con las decisiones que tomamos sobre cuáles son los datos a los que debemos prestar atención – y qué datos dejaremos fuera -. Y esas decisiones no se refieren únicamente a cuestiones logísticas, de beneficios o eficiencia, sino que son fundamentalmente decisiones morales.”


Leave a comment

Tu dirección de correo electrónico no será publicada.