Home » Articles posted by faraon (Page 9)

Author Archives: faraon

enero 2025
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
2728293031  

Preguntar para aprender

Preguntar para aprender
UniverSÍdad (www.universidadsi.es)
Faraón Llorens
20/07/2023

El mes pasado la Universidad de Málaga organizó la Jornada Inteligencia artificial generativa y docencia. ¿Qué vas a hacer? en la que impartí la charla El Rey va desnudo. Replanteando los trabajos académicos en la universidad. En ella argumentaba que al igual que el niño de la fábula, ahora la IA generativa estaba señalando las deficiencias del sistema educativo, en general y de la evaluación en particular. Pero estas deficiencias no son nuevas ni causadas por esta nueva tecnología.

/…/

Como dice el título del post, debemos explorar el valor de las preguntas en el aprendizaje. Suelo empezar mis charlas diciendo a los asistentes que, si han venido en busca de respuestas, no soy el orador adecuado. Mi objetivo es que, si han acudido con dos o tres preguntas sobre el tema, salgan con más de diez. Y es en ese momento cuando se está en condiciones de aprender: espoleado por la curiosidad y guiado por la satisfacción de saber.

Querida lectora, querido lector, espero que en estos momentos tengas más preguntas que al iniciar la lectura de este post. Tienes por delante el mes de agosto para reflexionar. ¡Felices vacaciones!

Leer la entrada completa:
www.universidadsi.es/preguntar-para-aprender

Educando centauros digitales

Educando centauros digitales
Faraón Llorens
Revista Hipótesis
https://www.ull.es/portal/cienciaull/revistahipotesis/
Nº 15. Más allá del ChatGPT. Reflexiones sobre el presente y futuro de la IA
https://www.ull.es/portal/cienciaull/tabletplanet/?w=4806
Universidad de La Laguna

¿Estamos enseñando a nuestros jóvenes lo que saben hacer las máquinas? Esto sería un error imperdonable, ya que las máquinas lo harán no solo mejor, sino más barato y sin cansarse ni pedir vacaciones. Hemos de aprender a colaborar con las máquinas, no a luchar contra ellas, ya que el resultado de esta colaboración será superior al que se consigue de forma separada.
/…/
Soy optimista, lo sé, pero va en el ADN de ser profesor. Tenemos un sistema educativo diseñado para un mundo con escasez de información, en el que había que ir a buscarla y guardarla para cuando la necesitásemos. Eso justificaba la etapa de nuestras vidas en la que nos formábamos y acudíamos a la universidad. Pero ahora vivimos en una sociedad con sobreinformación (verdades, medias verdades y falsedades), con acceso inmediato y a demanda a la misma. Las universidades, cumpliendo nuestro compromiso con la sociedad de creación, transmisión y preservación del conocimiento, ¿sabremos dar respuesta a este reto?

La nueva realidad de la educación ante los avances de la inteligencia artificial generativa

La nueva realidad de la educación ante los avances de la inteligencia artificial generativa
Francisco José García Peñalvo (Universidad de Salamanca), Faraón Llorens-Largo (Universidad de Alicante) y Javier Vidal (Universidad de León)
Revista Iberoamericana de Educación a Distancia (RIED)
Vol. 27 Núm. 1 (2024): Tendencias en la Educación Digital
https://revistas.uned.es/index.php/ried/issue/view/1749

https://revistas.uned.es/index.php/ried/article/view/37716

DOI: https://doi.org/10.5944/ried.27.1.37716

Palabras clave: inteligencia artificial, inteligencia artificial generativa, ChatGPT, educación

Resumen
Cada vez es más común interactuar con productos que parecen “inteligentes”, aunque quizás la etiqueta “inteligencia artificial” haya sido sustituida por otros eufemismos. Desde noviembre de 2022, con la aparición de la herramienta ChatGPT, ha habido un aumento exponencial en el uso de la inteligencia artificial en todos los ámbitos. Aunque ChatGPT es solo una de las muchas tecnologías generativas de inteligencia artificial, su impacto en los procesos de enseñanza y aprendizaje ha sido notable. Este artículo reflexiona sobre las ventajas, inconvenientes, potencialidades, límites y retos de las tecnologías generativas de inteligencia artificial en educación, con el objetivo de evitar los sesgos propios de las posiciones extremistas. Para ello, se ha llevado a cabo una revisión sistemática tanto de las herramientas como de la producción científica que ha surgido en los seis primeros meses desde la aparición de ChatGPT. La inteligencia artificial generativa es extremadamente potente y mejora a un ritmo acelerado, pero se basa en lenguajes de modelo de gran tamaño con una base probabilística, lo que significa que no tienen capacidad de razonamiento ni de comprensión y, por tanto, son susceptibles de contener fallos que necesitan ser contrastados. Por otro lado, muchos de los problemas asociados con estas tecnologías en contextos educativos ya existían antes de su aparición, pero ahora, debido a su potencia, no podemos ignorarlos solo queda asumir cuál será nuestra velocidad de respuesta para analizar e incorporar estas herramientas a nuestra práctica docente.

Usos y desusos del modelo GPT-3 entre estudiantes de grados de ingeniería

Usos y desusos del modelo GPT-3 entre estudiantes de grados de ingeniería
Daniel Amo-Filva, David Fonseca, David Vernet, Eduard De Torres, Pol Muñoz Pastor, Víctor Caballero, Eduard Fernandez, Marc Alier Forment, Francisco José García-Peñalvo, Alicia García-Holgado, Faraón Llorens-Largo, Rafael Molina-Carmona, Miguel Á. Conde, Ángel Hernández-García
XXIX Jornadas sobre Enseñanza Universitaria de la Informática (JENUI 2023)
Granada, 5, 6 y 7 de julio de 2023

Resumen
La herramienta ChatGPT, basada en el modelo GPT-3 desarrollado por OpenAI, ya se utiliza por estudiantes de grados de ingeniería como herramienta de apoyo en su proceso de aprendizaje. En este contexto, las implicaciones negativas que presenta el uso de esta herramienta son diversas: dependencia tecnológica, obstaculización del saber y conocer práctico, error en las respuestas, problemas éticos o incluso problemas legales. El uso de esta herramienta sin que los estudiantes hayan recibido formación se considera como problema a investigar. El objetivo es entender en profundidad el contexto tecnológico de la herramienta, cómo se utiliza actualmente entre los estudiantes de ingeniería de un conjunto de universidades privadas y públicas, y su impacto en la educación universitaria. Este artículo es un trabajo en desarrollo donde se presenta el contexto del estudio, la metodología de investigación y unos primeros resultados. Se conduce una encuesta cualitativa-exploratoria con una muestra de más de 360 estudiantes de grados de ingeniería matriculados en diferentes cursos. Se utiliza una estratificación aleatoria para asegurar que la muestra sea representativa de la población. Los resultados sugieren que el modelo GPT-3 puede ser utilizado como una herramienta beneficiosa para los estudiantes de grados de ingeniería.

Palabras clave
ChatGPT, GPT-3, OpenAI, TIC, universidad, ingeniería, riesgos tecnológicos, proceso de aprendizaje, ética, legalidad, encuesta cualitativa-exploratoria, estratificación aleatoria.

Artículo completo (pdf)

Vol 8 (2023) – Actas de las XXIX Jornadas sobre Enseñanza Universitaria de la Informática (Granada, 5, 6 y 7 de julio de 2023) (pdf)

Few-Shot Learning for Prediction of Electricity Consumption Patterns

Few-Shot Learning for Prediction of Electricity Consumption Patterns
Javier García-Sigüenza, José F. Vicent, Faraón Llorens-Largo y José-Vicente Berná-Martínez

IbPRIA 2023: 11th Iberian Conference on Pattern Recognition and Image Analysis
Alicante, Spain. June 27-30, 2023
www.ibpria.org/2023

Publicación:
Pertusa, A., Gallego, A.J., Sánchez, J.A., Domingues, I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2023. Lecture Notes in Computer Science, vol 14062. Springer, Cham.

https://doi.org/10.1007/978-3-031-36616-1_56

Abstract

Deep learning models have achieved extensive popularity due to their capability for providing an end-to-end solution. But, these models require training a massive amount of data, which is a challenging issue and not always enough data is available. In order to get around this problem, a few shot learning methods emerged with the aim to achieve a level of prediction based only on a small number of data. This paper proposes a few-shot learning approach that can successfully learn and predict the electricity consumption combining both the use of temporal and spatial data. Furthermore, to use all the available information, both spatial and temporal, models that combine the use of Recurrent Neural Networks and Graph Neural Networks have been used. Finally, with the objective of validate the approach, some experiments using electricity data of consumption of thirty-six buildings of the University of Alicante have been conducted.

Keywords
Few-shot learning, Graph neural networks, Electricity consumption, Pattern recognition

Póster

Metamodelo para implementação de transformação digital em IES

Metamodelo para implementação de transformação digital em IES:
jornada de transformação por meio de abordagem multiteórica de mudança organizacional

Adriana Veríssimo Karam Koleski
Programa De Pós-Graduação Em Engenharia E Gestão Do Conhecimento
Centro Tecnológico
Universidade Federal De Santa Catarina

Florianópolis, 2023

Hoy he formado parte de la banca examinadora de esta tesis doctoral.

Parabéns, Adriana!

ABSTRACT
The transformations experienced in the context of the networked society and the impact of digital technologies in all areas of society, have brought challenges and opportunities to organizations and, in particular, to higher education institutions (HEIs). The challenge of HEIs is twofold: at the same time that they have to transform as organizations to remain competitive, they need to reconfigure the education offered to their students. A process of planning, implementation and monitoring of strategies that enable their digital transformation (DT) is necessary. A transformation that is nourished by scientific knowledge and technologies structured by society and, at the same time, has a unique character for each HEI. This thesis addresses the question of how to implement DT in HEIs. It was was structured with the objective of conceiving a metamodel for DT implementation that respects the diversity, complexity and scope of the phenomenon in a HEI. The challenge was addressed using organizational change theories accompanied by concepts about DT in higher education, networked society, stakeholder theory and 21st century competencies. The nature of the research is technological and the paradigm adopted was pragmatism. As for the objectives it is exploratory and prescriptive, with the use of the mixed method and Design Science Research (DSR) as its methodological approach. The metamodel was conceived using design cycles sustained in the state of the art literature on the subject. The artifact is composed of four elements: digital transformation journey; theoretical lenses of change and digital transformation factors; stakeholders involved; spiraling journey. The results of evaluation of the metamodel were obtained by means of structured and semi-structured interviews with domain experts and strategic managers of HEIs and reveal that the metamodel is consistent, feasible and useful to guide the construction of DT models for HEIs.

Keywords: digital transformation; higher education; organizational change; metamodel.

Explainability techniques applied to road traffic forecasting using Graph Neural Network models

Explainability techniques applied to road traffic forecasting using Graph Neural Network models
Javier García-Sigüenza, Faraón Llorens-Largo, Leandro Tortosa and José F. Vicent
Information Sciences
Volume 645, October 2023, 119320
doi: doi.org/10.1016/j.ins.2023.119320
Available online 16 June 2023
(INS 119320)
https://www.sciencedirect.com/science/article/pii/S0020025523009052

Abstract
In recent years, several new Artificial Intelligence methods have been developed to make models more explainable and interpretable. The techniques essentially deal with the implementation of transparency and traceability of black box machine learning methods. Black box refers to the inability to explain why the model turns the input into the output, which may be problematic in some fields. To overcome this problem, our approach provides a comprehensive combination of predictive and explainability techniques. Firstly, we compared statistical regression, classic machine learning and deep learning models, reaching the conclusion that models based on deep learning exhibit greater accuracy. Of the great variety of deep learning models, the best predictive model in spatio-temporal traffic datasets was found to be the Adaptive Graph Convolutional Recurrent Network. Regarding the explainability technique, GraphMask shows a notably higher fidelity metric than other methods. The integration of both techniques was tested by means of experimental results, concluding that our approach improves deep learning model accuracy, making such models more transparent and interpretable. It allows us to discard up to 95% of the nodes used, facilitating an analysis of its behavior and thus improving the understanding of the model.

Keywords: Graph neural networks, deep learning, data analysis, explainability, traffic flow

Digital maturity evolution of Spanish universities

Digital maturity evolution of Spanish universities
Fernández, A., Llorens-Largo, F., Molina-Carmona, R. and Claver, J.M.
EUNIS 2023 Congress (www.eunis.org/eunis2023)
European Universities and the digital transformation: Challenges and opportunities ahead
14 – 16 June, 2023
Vigo 2023

European University Information Systems (www.eunis.org)
Universidad de Vigo (www.uvigo.gal)

Abstract
Higher Education Institutions (HEIs) are evolving towards a new university model called the digital university, which they will only reach by increasing their overall digital maturity. CRUE Spanish Universities (the Conference of Rectors of Spanish Universities) has used a new Digital Maturity Model for Universities (md4u) to analyze the digital maturity of more than 60 Spanish universities in the UNIVERSITIC 2020 and 2022 surveys. The results presented in this paper show that during this period Spanish universities have increased their overall digital maturity. This increase seems to be due to the COVID pandemic that we have suffered in this period, in which HEIs have launched a large number of digital initiatives to overcome this crisis. Additionally, HEIs leaders have understood the importance of increase digital maturity to make their institutions competitive in a fast changing digital environment.

Presentation

Session

¿Ha escrito ChatGPT mi TFM? No, pero podría

¿Ha escrito ChatGPT mi TFM? No, pero podría
Sergio Arjona Giner
Tutor: Faraón Llorens Largo
Trabajo Fin de Máster Profesorado Secundaria
Universidad de Alicante
Junio de 2023

Documento completo en RUA: en pdf

Resumen
La irrupción de las nuevas tecnologías basadas en IA provocará un gran cambio en muchos sectores e industrias. El sector educativo será uno de ellos, pues las nuevas herramientas ofrecen la posibilidad de personalizar el aprendizaje para el estudiantado, la automatización de las tareas rutinarias del profesorado y la potenciación de las evaluaciones adaptativas, entre otras ventajas. Sin embargo, aunque las oportunidades que ofrece la IA son prometedoras, existen ciertos riesgos asociados como la aceleración de la desinformación, la pérdida de las habilidades interpersonales o la vulneración de la privacidad de los datos. En concreto, en este trabajo se analiza si con ayuda de la IA es posible generar mejores documentos académicos. Para ello, se ha diseñado un experimento con el alumnado de primer curso del ciclo superior de Desarrollo en Aplicaciones Plataforma utilizando la herramienta ChatGPT. Los resultados muestran que si se interacciona con la IA de forma reflexiva se obtendrán mejores ensayos. Esto obliga al profesorado a replantearse los mecanismos de evaluación para cerciorarse de que el alumnado aprenda.

Proyecto centauro

Proyecto centauro.
La nueva frontera educativa.
Un modelo para los próximos treinta años.

José Antonio Marina
Ediciones Khaf
www.edicioneskhaf.es
Colección Expresiones

https://www.edicioneskhaf.es/catalogo/expresiones/proyecto-centauro-la-nueva-frontera-educativa-jose-antonio-marina

Frases entresacadas e ideas interesantes que puedo utilizar:

(Página 9)
“Hemos entrado en una sociedad del aprendizaje, regida por una ley implacable.”Toda persona, toda organización y toda sociedad, para sobrevivir, tiene que aprender al menos a la misma velocidad con la que cambia el entorno. Y si quiere progresar, tendrá que hacerlo a más velocidad”.”

(Página 14)
“”Para qué lo voy a aprender, si lo puedo buscar”. Eso supone anularse. Si el conocimiento está en la red, si la inteligencia está en la red, se han vuelto todos superfluos e intercambiables.”

(Página 65)
“lo único que podemos hacer para facilitar el futuro de nuestros hijos y alumnos es ayudarles a que aprendan a decidir bien y a realizar lo decidido”

(Página 93)
“Cuando adquiero un hábito, estoy ampliando mi inteligencia generadora.”

(Página 99)
“Una parte importante de la educación tienen que ocuparse de educar el inconsciente, para que produzca buenas ocurrencias, buenos sentimientos, buenas ideas. Esto puede sonar extraño, pero como veremos, lo hemos estado practicando durante siglos sin saberlo. Los hábitos son la herramienta de que disponemos para educar nuestra inteligencia generadora, es decir, nuestro inconsciente.”

(Página 105)
“La teoría de la inteligencia dual /…/ Su idea central es que nuestra inteligencia trabaja a dos niveles. Uno, de cuyas operaciones no somos conscientes, lo compartimos con los animales. Capta información, la reconoce, elabora, guarda y responde. Así, dirige la acción /…/ Llamamos inteligencia generadora al nivel inferior, de donde proceden nuestras ideas, sentimientos, deseos, proyectos. Y llamamos inteligencia ejecutiva al nivel que se encarga de recibir la información, evaluarla y tomar decisiones. Aquel es inconsciente, este consciente. La inteligencia ejecutiva nos permite orientar toda la colosal maquinaria de la inteligencia generadora hacia metas elegidas por el sujeto.”

(Página 219)
“Dado que el cerebro humano es un cognitive miser*, un ahorrador de esfuerzos, es difícil no rendirse ante la facilidad eficiente. Betty Sparrow estudió lo que llamó “efecto Google”, que puede resumirse como “para qué lo voy a aprender si lo puedo encontrar”.”

*rácano cognitivo

(Página 251)
“La propuesta del Proyecto Centauro es que los sistemas de inteligencia artificial deben formar parte de la inteligencia generadora de las personas, y que el modelo dual de la inteligencia nos permite diseñar bien este ensamblaje.
/…/
No es la inteligencia artificial la que va a decidir lo que hacen los humanos, sino los humanos los que deben tomar decisiones con la ayuda de la inteligencia artificial.”