Solución a el calendario

Problema 2 de nivel A de la Fase Comarcal de la de la XXX OMCV 2019
Se dirige a una edad de: 12-13 años

Recortamos, en una hoja de un calendario cualquiera dispuesto por semanas horizontalmente, un cuadrado de 3×3 días.

Si sumamos los nueve números de los días que contiene este cuadrado, obtenemos un número que es múltiplo de 13.

¿Sabrías decir qué número es el día que está en la esquina superior derecha del recorte?

Solución: Continue reading Solución a el calendario

El calendario

Problema 2 de nivel A de la Fase Comarcal de la de la XXX OMCV 2019
Se dirige a una edad de: 12-13 años

Recortamos, en una hoja de un calendario cualquiera dispuesto por semanas horizontalmente, un cuadrado de 3×3 días.

Si sumamos los nueve números de los días que contiene este cuadrado, obtenemos un número que es múltiplo de 13.

¿Sabrías decir qué número es el día que está en la esquina superior derecha del recorte?

Solución: Aquí.

Solución a elección

Problema 1 del nivel C de la Fase Comarcal de la de la XXX OMCV 2019
Se dirige a una edad de: 10-11 años

En una elección cada uno de los cinco candidatos obtuvo una cantidad diferente de votos.

En total hubo 36 votos.

El ganador obtuvo 12 votos y el perdedor obtuvo 4 votos.

¿Cuántos votos podía tener el candidato que quedó en segundo lugar?

¿Puede haber más de una solución?
Solución:
Continue reading Solución a elección

Elección

Problema 1 del nivel C de la Fase Comarcal de la de la XXX OMCV 2019
Se dirige a una edad de: 10-11 años

En una elección cada uno de los cinco candidatos obtuvo una cantidad diferente de votos.

En total hubo 36 votos.

El ganador obtuvo 12 votos y el perdedor obtuvo 4 votos.

¿Cuántos votos podía tener el candidato que quedó en segundo lugar?

¿Puede haber más de una solución?

Solución: Aquí.

Solución a los libros de Karen

Problema 1 del nivel B de la Fase Comarcal de la de la XXX OMCV 2019
Se dirige a una edad de: 14-15 años

Karen Uhlenbeck, la primera mujer que ha ganado el premio Abel, quiere dar cuatro libros a sus tres estudiantes de geometría: Ana, Bernat y Carla.

Si quiere repartirlos todos. ¿Cuál es la probabilidad de que Ana reciba dos libros?

(Cuidado, hay varias respuestas debido a la ambigüedad del planteamiento).

Solución:
Continue reading Solución a los libros de Karen

Los libros de Karen

Problema 1 del nivel B de la Fase Comarcal de la de la XXX OMCV 2019
Se dirige a una edad de: 14-15 años

Karen Uhlenbeck, la primera mujer que ha ganado el premio Abel, quiere dar cuatro libros a sus tres estudiantes de geometría: Ana, Bernat y Carla.

Si quiere repartirlos todos. ¿Cuál es la probabilidad de que Ana reciba dos libros?

(Cuidado, hay varias respuestas debido a la ambigüedad del planteamiento).

Solución: Aquí.

Solución a triángulos girados

Problema 1 de la Fase Comarcal de la de la XXX OMCV 2019
Se dirige a una edad de: 12-13 años

Tenemos dos triángulos equiláteros iguales, que forman uno con otro un ángulo de 80º en el vértice que se tocan.

Unimos un vértice de un triángulo con el que está en la otra posición del otro (no con el simétrico).

¿Qué ángulo forma este segmento con el lateral del triángulo que no toca el vértice que los une?

Solución:
Continue reading Solución a triángulos girados

Triángulos girados

Problema 1 de la Fase Comarcal de la de la XXX OMCV 2019
Se dirige a una edad de: 12-13 años

Tenemos dos triángulos equiláteros iguales, que forman uno con otro un ángulo de 80º en el vértice que se tocan.

Unimos un vértice de un triángulo con el que está en la otra posición del otro (no con el simétrico).

¿Qué ángulo forma este segmento con el lateral del triángulo que no toca el vértice que los une?

Solución: Aquí.

Solución a dos naranjas en un bol

Problema 1 del nivel B fase autonómica de la Olimpiada de la Comunidad Valenciana 2018
Se dirige a una edad de: 13-14 años

Tenemos dos naranjas de 5 centímetros de radio.

¿Cuál es la altura mínima que debe tener un bol semiesférico para que podamos poner dentro las dos naranjas sin que sobresalgan?

Si tenemos un bol del tamaño indicado en el apartado anterior, ¿a qué altura respecto al fondo del bol quedan los puntos en los que las naranjas tocan el bol?

Solución: Continue reading Solución a dos naranjas en un bol

Dos naranjas en un bol

Problema 1 del nivel B fase autonómica de la Olimpiada de la Comunidad Valenciana 2018
Se dirige a una edad de: 13-14 años

Tenemos dos naranjas de 5 centímetros de radio.

¿Cuál es la altura mínima que debe tener un bol semiesférico para que podamos poner dentro las dos naranjas sin que sobresalgan?

Si tenemos un bol del tamaño indicado en el apartado anterior, ¿a qué altura respecto al fondo del bol quedan los puntos en los que las naranjas tocan el bol?

Solución: Aquí.