Interpretación geométrica de las ecuaciones

Comúnmente, se considera la solución de una ecuación como el valor que debe tomar x para que la igualdad de la ecuación se cumpla. Sin embargo, podemos ver una ecuación como una igualdad entre dos funciones. Para que sea más sencillo de explicar y entender, nos ayudaremos de un ejemplo.

Recordad que la gráfica de una función f es el conjunto de puntos (x, f(x)). Teniendo esto en cuenta, si la gráfica de la función f y de la función g se cortan, lo hacen en un punto común (a, b) siendo b = f(a) = g(a).

Ejemplo

Sea la ecuación de primer grado

Interpretación geométrica de las ecuaciones. Una ecuación puede verse como una igualdad entre dos funciones y la solución son los puntos de corte de las gráficas de dichas funciones. Podemos deducir el número de soluciones. Con ejemplos, gráficas y problemas resueltos. Geometría plana. Secundaria. ESO. Matemáticas.

Consideremos esta ecuación como una igualdad entre dos funciones:

Interpretación geométrica de las ecuaciones. Una ecuación puede verse como una igualdad entre dos funciones y la solución son los puntos de corte de las gráficas de dichas funciones. Podemos deducir el número de soluciones. Con ejemplos, gráficas y problemas resueltos. Geometría plana. Secundaria. ESO. Matemáticas.

Lógicamente, las funciones f y g son

Interpretación geométrica de las ecuaciones. Una ecuación puede verse como una igualdad entre dos funciones y la solución son los puntos de corte de las gráficas de dichas funciones. Podemos deducir el número de soluciones. Con ejemplos, gráficas y problemas resueltos. Geometría plana. Secundaria. ESO. Matemáticas.

Como f(x) es la imagen de x mediante f y g(x) es la imagen de x mediante g, al igualar f(x) = g(x), estamos igualando las imágenes de x mediante f y g. Por tanto,  la solución de la ecuación f(x) = g(x) son los valores que debe tomar x para que f(x) = g(x) y son, por ende, las primeras coordenadas de los puntos de corte entre las gráficas de f y g.

Resolvemos la ecuación del ejemplo:

Interpretación geométrica de las ecuaciones. Una ecuación puede verse como una igualdad entre dos funciones y la solución son los puntos de corte de las gráficas de dichas funciones. Podemos deducir el número de soluciones. Con ejemplos, gráficas y problemas resueltos. Geometría plana. Secundaria. ESO. Matemáticas.

Como la ecuación sólo tiene una solución, las gráficas de f y de g se cortan en un único punto: el punto cuya primera coordenada es x = 1.  Calculamos la segunda coordenada de dicho punto:

Interpretación geométrica de las ecuaciones. Una ecuación puede verse como una igualdad entre dos funciones y la solución son los puntos de corte de las gráficas de dichas funciones. Podemos deducir el número de soluciones. Con ejemplos, gráficas y problemas resueltos. Geometría plana. Secundaria. ESO. Matemáticas.

Luego el punto de corte de las gráficas de f y de g es (1, 1).

Gráficas:

Interpretación geométrica de las ecuaciones. Una ecuación puede verse como una igualdad entre dos funciones y la solución son los puntos de corte de las gráficas de dichas funciones. Podemos deducir el número de soluciones. Con ejemplos, gráficas y problemas resueltos. Geometría plana. Secundaria. ESO. Matemáticas.

Al considerar una ecuación como una igualdad entre funciones para hallar sus puntos de corte, es fácil ver que pueden darse las siguientes situaciones:

  • Una ecuación puede no tener solución (real). Ocurre cuando las dos gráficas no se cortan:

Interpretación geométrica de las ecuaciones. Una ecuación puede verse como una igualdad entre dos funciones y la solución son los puntos de corte de las gráficas de dichas funciones. Podemos deducir el número de soluciones. Con ejemplos, gráficas y problemas resueltos. Geometría plana. Secundaria. ESO. Matemáticas.

  • Una ecuación puede tener una única solución. Ocurre cuando las dos gráficas se cortan en un único punto:

Interpretación geométrica de las ecuaciones. Una ecuación puede verse como una igualdad entre dos funciones y la solución son los puntos de corte de las gráficas de dichas funciones. Podemos deducir el número de soluciones. Con ejemplos, gráficas y problemas resueltos. Geometría plana. Secundaria. ESO. Matemáticas.

  • Una ecuación puede tener varias soluciones. Ocurre cuando las dos gráficas se cortan en varios puntos:

Interpretación geométrica de las ecuaciones. Una ecuación puede verse como una igualdad entre dos funciones y la solución son los puntos de corte de las gráficas de dichas funciones. Podemos deducir el número de soluciones. Con ejemplos, gráficas y problemas resueltos. Geometría plana. Secundaria. ESO. Matemáticas.

  • Una ecuación puede tener infinitas soluciones. Ocurre cuando las dos gráficas son iguales (se cortan en todos sus puntos) o cuando se cortan en infinitos puntos pero no en todos:

Interpretación geométrica de las ecuaciones. Una ecuación puede verse como una igualdad entre dos funciones y la solución son los puntos de corte de las gráficas de dichas funciones. Podemos deducir el número de soluciones. Con ejemplos, gráficas y problemas resueltos. Geometría plana. Secundaria. ESO. Matemáticas.

Ahora bien, el número de soluciones dependerá de las funciones implicadas.

Más información y temas relacionados: 

Teorema del seno

El teorema del seno es un conocido e importante resultado de trigonometría que dice así:

Sea un triángulo cualquiera con lados a, b y c y con ángulos interiores α, β y γ (son los ángulos opuestos a los lados, respectivamente). Entonces, se cumple la relación

el teorema del seno (con demostración) y problemas resueltos de su aplicación: calcular lados, ángulos y áreas de triángulos. Fórmula del área de un triángulo aplicando el teorema del seno.

Veamos dos ejemplos de aplicación:

Ejemplo 1: en el siguiente triángulo de lados a = 8cm y b = 7cm. Calcular cuánto mide el ángulo β sabiendo que el ángulo γ mide 45º.

el teorema del seno (con demostración) y problemas resueltos de su aplicación: calcular lados, ángulos y áreas de triángulos. Fórmula del área de un triángulo aplicando el teorema del seno.

Como conocemos los lados a y b y el ángulo α, aplicamos el teorema del seno:

el teorema del seno (con demostración) y problemas resueltos de su aplicación: calcular lados, ángulos y áreas de triángulos. Fórmula del área de un triángulo aplicando el teorema del seno.

Por tanto,

el teorema del seno (con demostración) y problemas resueltos de su aplicación: calcular lados, ángulos y áreas de triángulos. Fórmula del área de un triángulo aplicando el teorema del seno.

Despejamos el seno de β:

el teorema del seno (con demostración) y problemas resueltos de su aplicación: calcular lados, ángulos y áreas de triángulos. Fórmula del área de un triángulo aplicando el teorema del seno.

Finalmente, despejamos β utilizando la inversa del seno (arcoseno):

el teorema del seno (con demostración) y problemas resueltos de su aplicación: calcular lados, ángulos y áreas de triángulos. Fórmula del área de un triángulo aplicando el teorema del seno.

Luego el ángulo es

el teorema del seno (con demostración) y problemas resueltos de su aplicación: calcular lados, ángulos y áreas de triángulos. Fórmula del área de un triángulo aplicando el teorema del seno.

Ejemplo 2: se tiene un triángulo con ángulos α = 67° y β = 36° y un lado a = 6cm. ¿Cuánto mide el lado c?

el teorema del seno (con demostración) y problemas resueltos de su aplicación: calcular lados, ángulos y áreas de triángulos. Fórmula del área de un triángulo aplicando el teorema del seno.

Para calcular el lado c necesitamos conocer el ángulo γ.

Recordemos que en todo triángulo la suma de sus ángulos internos es 180°, es decir, tenemos la ecuación:

el teorema del seno (con demostración) y problemas resueltos de su aplicación: calcular lados, ángulos y áreas de triángulos. Fórmula del área de un triángulo aplicando el teorema del seno.

Despejamos el ángulo γ:

el teorema del seno (con demostración) y problemas resueltos de su aplicación: calcular lados, ángulos y áreas de triángulos. Fórmula del área de un triángulo aplicando el teorema del seno.

Sustituimos los valores:

el teorema del seno (con demostración) y problemas resueltos de su aplicación: calcular lados, ángulos y áreas de triángulos. Fórmula del área de un triángulo aplicando el teorema del seno.

Luego el ángulo es γ = 77º.

Ahora podemos aplicar el teorema del seno:

el teorema del seno (con demostración) y problemas resueltos de su aplicación: calcular lados, ángulos y áreas de triángulos. Fórmula del área de un triángulo aplicando el teorema del seno.

Sustituimos los datos:

el teorema del seno (con demostración) y problemas resueltos de su aplicación: calcular lados, ángulos y áreas de triángulos. Fórmula del área de un triángulo aplicando el teorema del seno.

Por tanto,

el teorema del seno (con demostración) y problemas resueltos de su aplicación: calcular lados, ángulos y áreas de triángulos. Fórmula del área de un triángulo aplicando el teorema del seno.

Luego el lado c mide 6.35 cm.

Más ejemplos y temas relacionados:

Teorema del coseno

Dado un triángulo cualquiera con lados a, b y c con ángulos interiores α, β y γ (son los ángulos opuestos a los lados, respectivamente). Entonces, se cumplen las relaciones siguientes:

El teorema del coseno (con demostración). Problemas resueltos de aplicación del teorema del coseno: calcular lados, ángulos y áreas de triángulos. Problemas resueltos y explicados paso a paso. Trigonometría. Bachiller.

Ejemplo: se tiene un triángulo cuyos lados b y c miden 45 y 66 cm respectivamente y cuyo ángulo α mide 47°. Hallar cuánto mide el lado a del triángulo.

El teorema del coseno (con demostración). Problemas resueltos de aplicación del teorema del coseno: calcular lados, ángulos y áreas de triángulos. Problemas resueltos y explicados paso a paso. Trigonometría. Bachiller.

Como queremos calcular el lado a del triángulo, aplicamos la siguiente fórmula del teorema del coseno:

El teorema del coseno (con demostración). Problemas resueltos de aplicación del teorema del coseno: calcular lados, ángulos y áreas de triángulos. Problemas resueltos y explicados paso a paso. Trigonometría. Bachiller.

Tenemos los datos necesarios para calcular a, es decir, tenemos bc y al ángulo α. Por tanto, sustituyendo los datos y haciendo la raíz cuadrada obtenemos:

El teorema del coseno (con demostración). Problemas resueltos de aplicación del teorema del coseno: calcular lados, ángulos y áreas de triángulos. Problemas resueltos y explicados paso a paso. Trigonometría. Bachiller.

Luego el lado a mide aproximadamente 48.27 cm.

Nota: al hacer la raíz cuadrada hay que escribir el signo ±, pero como a representa una longitud, debe ser positiva.

Nota 2: utilizamos el signo  para indicar que el valor de a es una aproximación.

Más información: