Teorema del sándwich o del emparedado

El teorema del sándwich establece que si una función f(x) se encuentra entre dos funciones g(x) y h(x), es decir,

Y los límites de g(x) y de h(x) existen y son iguales, entonces el límite de f(x) también existe y coincide con el de g(x) y el de h(x).

 

Veamos un par de ejemplos de la importancia del teorema del sándwich en la práctica demostrando límites.

Ejemplo 1

el límite de sin(x)/x es 0

En principio, este límite no es sencillo de calcular, puesto que la función seno es una función periódica que toma valores en el intervalo [-1, 1], por lo que el límite cuando x tiende a infinito es indeterminado.

Así, pues, vamos a acotar la función sin(x)/x entre dos funciones con límite.

Como el seno toma valores entre -1 y 1, podemos escribir

Dividimos entre x:

Ya tenemos la función acotada entre dos funciones (siempre que x sea mayor que 0) y estas funciones tienen límite cuando x tiende a infinito y es 0.

Por tanto, la función sin(x)/x también tiene límite y es 0:

Ejemplo 2 

El coseno es una función periódica con valores en el intervalo [-1, 1], aunque existe su límite cuando x tiende a 0 y es cos(0) = 1. Sin embargo, en la función del límite el argumento del coseno es 1/x, el cual tiende a infinito cuando x tiende a 0. Además, el coseno del límite está además multiplicado por x.

A pesar de todo esto, el límite es sencillo de calcular mediante el teorema del sándwich. Acotamos el coseno:

Supongamos que x>0, entonces

Por el teorema del emparedado,

Enunciamos y demostramos el teorema del emparedado para funciones, series y sucesiones. Límite de una función (serie o sucesión) comprendida entre otras dos. Ejemplos de aplicación. Teorema del emparedado, del sándwich, de encaje o del bocadillo. Bachillerato y Universidad. Matemáticas. Análisis de una variable.

Ahora, hacemos lo mismo suponiendo que x<0:

Enunciamos y demostramos el teorema del emparedado para funciones, series y sucesiones. Límite de una función (serie o sucesión) comprendida entre otras dos. Ejemplos de aplicación. Teorema del emparedado, del sándwich, de encaje o del bocadillo. Bachillerato y Universidad. Matemáticas. Análisis de una variable.

Por el teorema del emparedado,

Enunciamos y demostramos el teorema del emparedado para funciones, series y sucesiones. Límite de una función (serie o sucesión) comprendida entre otras dos. Ejemplos de aplicación. Teorema del emparedado, del sándwich, de encaje o del bocadillo. Bachillerato y Universidad. Matemáticas. Análisis de una variable.

Como los límites laterales coinciden,

Enunciamos y demostramos el teorema del emparedado para funciones, series y sucesiones. Límite de una función (serie o sucesión) comprendida entre otras dos. Ejemplos de aplicación. Teorema del emparedado, del sándwich, de encaje o del bocadillo. Bachillerato y Universidad. Matemáticas. Análisis de una variable.

Gráfica de la función:

Enunciamos y demostramos el teorema del emparedado para funciones, series y sucesiones. Límite de una función (serie o sucesión) comprendida entre otras dos. Ejemplos de aplicación. Teorema del emparedado, del sándwich, de encaje o del bocadillo. Bachillerato y Universidad. Matemáticas. Análisis de una variable.

Más ejemplos en Teorema del emparedado o del sándwich.

Otros temas relacionados:

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos necesarios están marcados *