Ejemplos de continuidad de funciones definidas a trozos

La continuidad de una función definida a trozos o por intervalos se estudia del mismo que una función normal, pero hay que tratar los puntos donde cambia la definición de la función como posibles puntos de discontinuidad. En estos puntos, tenemos que comprobar si los límites laterales coinciden.

Veamos algunos ejemplos.

Ejemplo 1

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

La función es continua en cada uno de los tres intervalos puesto que se tratan de polinomios. Los posibles candidatos a puntos de discontinuidad son los extremos de los intervalos: x=0 y x=1.

Calculamos los límites laterales en estos puntos:

Punto x=0

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

Punto x=1

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

El único punto de discontinuidad es x=0, ya que los límites laterales no coinciden.

Gráfica:

Definimos función continua y discontinua, mostramos algunos ejemplos y resolvemos 5 problemas. Funciones polinómicas, funciones racionales, funciones definidas a trozos, funciones con raíces y funciones trigonométricas. ESO y Bachillerato. Matemáticas. Continuidad de funciones.

Ejemplo 2

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

  • En el intervalo x≤3, la función es racional. Tenemos que excluir el punto x=2 del dominio porque anula al denominador.
  • En el intervalo x>3, también es racional. El denominador se anula en x=3/2 <3, así que no hay que excluir ningún punto.

El dominio de la función es el conjunto de los reales excepto x=2.

Calculamos los límites laterales en el punto x=3:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Como no coinciden, la función no es continua en x=3.

La función es continua en todos los reales excepto en x=2 y x=3.

Gráfica:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Ejemplo 3

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

El dominio es el conjunto de los reales.

En cada intervalo (abierto) de definición, la función es continua. Tenemos que ver qué ocurre en los puntos x=2 y x=3.

Límites laterales en x=2:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Como los límites son distintos, no hay continuidad en x=2.

Límites laterales en x=3:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Como los límites son distintos, no hay continuidad en x=3.

Por tanto, la función es continua en el conjunto de los reales excepto en x=2 y x=3.

Gráfica:

Explicamos el concepto de continuidad de una función (especialmente en el caso de las funciones continuas, por lo que usamos límites laterales). Proporcionamos ejemplos y resolvemos ejercicios de calcular el dominio y la continuidad. Ejercicios resueltos. Matemáticas. Bachillerato. Análisis.

Más ejemplos en

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos necesarios están marcados *