¿Se puede dividir entre 0?

Aunque pueda pensarse que tendría sentido la división entre cero, esta operación no es posible matemáticamente porque conduce a contradicciones matemáticas, como muestran algunos ejemplos que proporcionamos a continuación.

Ejemplo 1

Partiendo de la igualdad a = 0, sumando 1  y  dividiendo entre a en ambos lados, obtenemos una contradicción:

Mostramos algunos ejemplos de contradicciones que se obtienen al asumir que se puede dividir entre 0. También, hablamos sobre el falso mito de que dividir entre cero tiene resultado infinito y su origen. Secundaria. Bachillerato. Matemáticas.

Esta contradicción surge en la cuarta igualdad, cuando hemos dividido entre a = 0.

 

Ejemplo 2

La división de números reales a/b es el único número real c tal que a = b·c, es decir,

Mostramos algunos ejemplos de contradicciones que se obtienen al asumir que se puede dividir entre 0. También, hablamos sobre el falso mito de que dividir entre cero tiene resultado infinito y su origen. Secundaria. Bachillerato. Matemáticas.

Si suponemos que b puede ser 0,  entonces tenemos que para cualquier número a existe un único número c tal que a = b·c = 0·c = 0, lo que significa que cualquier número real, a, es igual a 0, lo cual es falso.

 

Más ejemplos y temas relacionados: 

 

Ecuación de una circunferencia

La circunferencia de radio R y centro P = (a, b) es el conjunto de puntos del plano tales que su distancia al punto P es exactamente R:

Proporcionamos la ecuación de la circunferencia de centro (a, b) y radio R: (x-a)²+(y-b)² = R² y del círculo. Resolvemos problemas resueltos explicados paso a paso. Puntos de la circunferencia. Geometría plana. Secundaria. ESO. Matemáticas.

Dichos puntos cumplen una ecuación, la ecuación de la circunferencia, que es la siguiente:

Proporcionamos la ecuación de la circunferencia de centro (a, b) y radio R: (x-a)²+(y-b)² = R² y del círculo. Resolvemos problemas resueltos explicados paso a paso. Puntos de la circunferencia. Geometría plana. Secundaria. ESO. Matemáticas.

Proporcionamos la ecuación de la circunferencia de centro (a, b) y radio R: (x-a)²+(y-b)² = R² y del círculo. Resolvemos problemas resueltos explicados paso a paso. Puntos de la circunferencia. Geometría plana. Secundaria. ESO. Matemáticas.

Si queremos saber si un punto forma parte de una circunferencia dada (o de un círculo), sólo tenemos que comprobar si sus coordenadas cumplen la ecuación.

Ejemplo: la circunferencia x ²+ y² = 1 tiene centro (0,0) y su radio es 1

Proporcionamos la ecuación de la circunferencia de centro (a, b) y radio R: (x-a)²+(y-b)² = R² y del círculo. Resolvemos problemas resueltos explicados paso a paso. Puntos de la circunferencia. Geometría plana. Secundaria. ESO. Matemáticas.

El punto (0, 1) es de la circunferencia y, por tanto, sus coordenadas cumplen la ecuación de la circunferencia:

Proporcionamos la ecuación de la circunferencia de centro (a, b) y radio R: (x-a)²+(y-b)² = R² y del círculo. Resolvemos problemas resueltos explicados paso a paso. Puntos de la circunferencia. Geometría plana. Secundaria. ESO. Matemáticas.

Sin embargo, el punto (1, 1) no cumple la ecuación porque no es un punto de la circunferencia:

Proporcionamos la ecuación de la circunferencia de centro (a, b) y radio R: (x-a)²+(y-b)² = R² y del círculo. Resolvemos problemas resueltos explicados paso a paso. Puntos de la circunferencia. Geometría plana. Secundaria. ESO. Matemáticas.

Más ejemplos y temas relacionados:

Ecuaciones con fracciones

Fracciones con igual denominador

Si tenemos una ecuación con fracciones con el mismo denominador, para eliminar las fracciones de la ecuación sólo tenemos que multiplicar TODOS los sumandos de la ecuación por el denominador.

Ejemplo:

Explicamos cómo resolver ecuaciones con fracciones: tenemos que multiplicar toda la ecuación por el mínimo común múltiplo de los denominadores. También, recordamos algunas propiedades de las fracciones. Con ejemplos y ecuaciones resueltas. Secundaria. ESO. Álgebra. Matemáticas.

Multiplicamos todos los sumandos por el único denominador 2 y los denominadores desaparecen:

Explicamos cómo resolver ecuaciones con fracciones: tenemos que multiplicar toda la ecuación por el mínimo común múltiplo de los denominadores. También, recordamos algunas propiedades de las fracciones. Con ejemplos y ecuaciones resueltas. Secundaria. ESO. Álgebra. Matemáticas.

Resolver la ecuación es muy sencillo ahora:

Explicamos cómo resolver ecuaciones con fracciones: tenemos que multiplicar toda la ecuación por el mínimo común múltiplo de los denominadores. También, recordamos algunas propiedades de las fracciones. Con ejemplos y ecuaciones resueltas. Secundaria. ESO. Álgebra. Matemáticas.

Fracciones con distinto denominador

Si tenemos una ecuación con denominadores distintos, podemos multiplicar TODOS los sumandos de la ecuación por el MÍNIMO COMÚN MÚLTIPLO (mcm) de los denominadores.

Recordad que para calcular el mcm de dos números tenemos que descomponerlos en un producto de potencias de números primos y escoger los factores comunes y no comunes al mayor exponente.

Ejemplo:

Explicamos cómo resolver ecuaciones con fracciones: tenemos que multiplicar toda la ecuación por el mínimo común múltiplo de los denominadores. También, recordamos algunas propiedades de las fracciones. Con ejemplos y ecuaciones resueltas. Secundaria. ESO. Álgebra. Matemáticas.

Podemos reescribir la ecuación extrayendo las x del numerador:

Explicamos cómo resolver ecuaciones con fracciones: tenemos que multiplicar toda la ecuación por el mínimo común múltiplo de los denominadores. También, recordamos algunas propiedades de las fracciones. Con ejemplos y ecuaciones resueltas. Secundaria. ESO. Álgebra. Matemáticas.

Tenemos los denominadores 2 y 3. Como son números primos, su mínimo común múltiplo es 6, así que multiplicamos todos los sumandos por 6:

Explicamos cómo resolver ecuaciones con fracciones: tenemos que multiplicar toda la ecuación por el mínimo común múltiplo de los denominadores. También, recordamos algunas propiedades de las fracciones. Con ejemplos y ecuaciones resueltas. Secundaria. ESO. Álgebra. Matemáticas.

Resolvemos la ecuación:

Explicamos cómo resolver ecuaciones con fracciones: tenemos que multiplicar toda la ecuación por el mínimo común múltiplo de los denominadores. También, recordamos algunas propiedades de las fracciones. Con ejemplos y ecuaciones resueltas. Secundaria. ESO. Álgebra. Matemáticas.

Más ejemplos y temas relacionados:

Encontrar la parábola a partir de su gráfica

Observando la gráfica de una parábola podemos obtener la siguiente información:

  • Las coordenadas del vértice.
  • Las coordenadas de 3 puntos distintos de la gráfica.
  • Los puntos de corte con el eje abscisas.

Esta información es suficiente para hallar la ecuación de una parábola, la cual tiene la forma

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

siendo a ≠ 0.

Ahora, recordamos algunos conceptos que nos ayudarán a obtener los coeficientes a, b y c a partir de la gráfica de la parábola.

Vértice

Todas las parábolas tienen forma de  (si a>0) o de  (si a<0). En cualquier caso, el punto más alto o máximo (si a>0) o el punto más bajo o mínimo (si a<0) de la parábola es el punto cuya primera coordenada es

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Ejemplo de una parábola con forma de  (verde) y otra con forma de  (azul):

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Raíces

Los puntos (α, 0) de la parábola cortan al eje de abscisas. Una parábola puede tener 1, 2 o ningún punto de corte con este eje. Se pueden dar 3 casos.

Caso 1:

La parábola tiene dos raíces (reales) distintas: α y β. Entonces, se cumple la siguiente igualdad:

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Caso 2:

La parábola tiene una única raíz (real): α. Entonces, se cumple que

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Caso 3:

La parábola no tiene raíces. En este caso, no podemos usar las raíces para encontrar la ecuación.

Obtener la ecuación

Una forma de obtener la ecuación de la parábola es hacerlo resolviendo un sistema de ecuaciones lineales a partir de 3 puntos distintos de la parábola. Sin embargo, este método puede ser engorroso, así que es preferible utilizar las propiedades vistas anteriormente: coordenadas del vértice, puntos de corte, etc.

Ejemplo 1: encontrar la ecuación de la parábola que corta al eje de las abscisas en los puntos (1, 0) y (3, 0) y que pasa al eje de ordenadas en el punto (0, 9).

De los puntos de corte con el eje de abscisas sabemos que las raíces de la función parabólica son x = 1 y x = 3. Por tanto, la ecuación de la parábola es

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Falta conocer el coeficiente , pero podemos hallarlo sabiendo que la parábola pasa por el punto (0, 9). Sólo tenemos que sustituir las coordenadas:

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Por tanto, la ecuación de la parábola es

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

O bien, si calculamos los productos,

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Gráfica:

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Ejemplo 2: hallar la ecuación de la parábola que tiene el vértice en el punto (1, 1) y que pasa por el punto (0, -3).

Sabemos que la primera coordenada del vértice es

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Por tanto, como el vértice está en (1, 1), tenemos

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Por otro lado, podemos sustituir las coordenadas del punto (0, -3) en la ecuación general de la parábola:

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Sustituimos  y n la ecuación:

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Nos falta hallar el coeficiente , pero también podemos sustituir las coordenadas del vértice (1, 1) en la ecuación:

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Luego la ecuación de la parábola es

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Gráfica:

Explicamos cómo encontrar la ecuación de una parábola en distintas situaciones: conociendo puntos de su gráfica, el vértice, puntos de corte, etc. Con ejemplos y problemas resueltos explicados. Secundaria. ESO. Matemáticas.

Más ejemplos y temas relacionados:

¿Existen funciones que no cortan los ejes de coordenadas?

Dada una función y = f(x), los puntos de su gráfica son (a, b) tal que b = f(a).

Eje vertical, Y

El posible punto que corta al eje vertical es (0, f(0)). Sin embargo, puede darse el caso de que x = 0 no sea un punto del dominio de y = f(x) (porque no existe la imagen de 0). Esto ocurre, por ejemplo, con la función f(x) = 1/x:

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.

 

Eje horizontal, X

Los puntos que cortan al eje vertical son (a, 0) tales que f(a) = 0. Para hallar dichos puntos, sólo hay que resolver la ecuación f(x) = 0. Si dicha ecuación no tiene solución, entonces no hay punto de corte. Esto ocurre, por ejemplo, con la función f(x) = -x2 +2x -2

Problemas resueltos de rectas y de parábolas: encontrar rectas y parabólas con determinada pendiente, vértice, que pasen por determinados puntos, etc. Problemas para secundaria.

Función sin puntos de corte

Una función que no corte a los ejes debe cumplir las siguientes condiciones:

  • No existe imagen de x = 0.
  • La ecuación f(x) = 0 no tiene soluciones (reales).

La función f(x) = 1/x cumple estas condiciones y es un ejemplo de función que no corta a los ejes de coordenadas. Otros ejemplos:

    • f(x) = 1/x2
    • f(x) = 1 + |x|
    • f(x) = 1 + √x

Más ejemplos y temas relacionados:

¿Por qué no puede haber más de un punto de corte con el eje vertical?

Dada una función y = f(x), los puntos de su gráfica son (a, b) tal que b = f(a).

Como el eje de coordenadas vertical, Y, es el conjunto de puntos (0, y), entonces los puntos de la gráfica de y = f(x) que cortan a dicho eje son (0, f(0)).

Recordad que un número sólo puede tener una imagen y, como consecuencia, sólo hay una imagen de 0, f(0), y, por ende, un único punto (0, f(0)).

Ahora bien, puede darse el caso de que no existe la imagen de 0 por no ser éste un punto de su dominio. Por ejemplo, la función f(x) = 1/x no está definida para x = 0, puesto que no se puede dividir entre 0, por lo que dicha gráfica nunca corta al eje Y:

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.

 

No ocurre lo mismo con el eje horizontal puesto que los puntos de la gráfica de y = f(x) que lo cortan son (a, 0) tales que f(a) = 0.  Sí puede haber diferentes puntos del dominio cuya imagen sea 0 y podemos hallarlos resolviendo la ecuación f(x) = 0.

Por ejemplo, la gráfica de la función f(x) = x3-3x corta al eje vertical en tres puntos distintos:

Explicamos qué es la gráfica de una función y cómo dibujarla con la ayuda de algunos de sus puntos. También, mostramos algunos ejemplos de gráficas (función lineal, parabólica, cúbica, etc.) y explicamos cómo calcular los puntos de corte con los ejes. Se incluyen ejemplos, gráficas y problemas resueltos. Secundaria. ESO.

Más información y temas relacionados:

 

Puntos de corte con los ejes

Recordad que el eje vertical (Y) es el eje de las ordenadas; y el horizontal (X), el eje abscisas.

Recordad que los puntos de la gráfica de f son (a, b), siendo b = f(a). 

La gráfica de una función puede cortar en uno o varios puntos a los ejes de coordenadas o no cortarlos. Más exactamente, SÓLO puede cortar al eje vertical en un punto y puede cortar al eje vertical en varios puntos.

A continuación, vamos a ver cómo calcular los puntos de corte con los ejes.

1. Punto de corte con el eje vertical Y

El eje vertical está situado cortando el eje horizontal X en el punto x = 0.

Esto significa que los puntos que están sobre el eje Y tienen un 0 en la primera coordenada.

Por tanto, el punto de corte de la gráfica de f con dicho eje, si existe, es el punto

Explicamos qué son y cómo calcular los puntos de corte de la gráfica de una función con los ejes de coordenadas, con ejemplos y problemas resueltos. Secundaria. ESO. Funciones. Matemáticas

La primera coordenada del punto es 0 y la segunda coordenada es la imagen de x = 0.

Ejemplo: calculamos el punto de corte de la gráfica de f(x) = x2 + 2 con el eje Y:

Explicamos qué son y cómo calcular los puntos de corte de la gráfica de una función con los ejes de coordenadas, con ejemplos y problemas resueltos. Secundaria. ESO. Funciones. Matemáticas

Por tanto, el punto de corte es (0, 2).

Gráfica de la función:

Explicamos qué son y cómo calcular los puntos de corte de la gráfica de una función con los ejes de coordenadas, con ejemplos y problemas resueltos. Secundaria. ESO. Funciones. Matemáticas

 

No hay punto de corte con el eje Y si no existe f(0). Esto ocurre, por ejemplo, con la función f(x) = 1/x, ya que no se puede dividir entre 0, cuya gráfica es

Explicamos qué son y cómo calcular los puntos de corte de la gráfica de una función con los ejes de coordenadas, con ejemplos y problemas resueltos. Secundaria. ESO. Funciones. Matemáticas

2. Puntos de corte con el eje horizontal X

Los puntos situados sobre el eje horizontal X son los que tienen un 0 en la segunda coordenada: son los puntos (x, 0).

Es decir, la gráfica de f corta al eje X si existe algún x tal que f(x) = 0. Para calcular dichas x sólo tenemos que resolver la ecuación f(x) = 0.

Ejemplo: calculamos los puntos de corte de la gráfica de la función f(x) = x2 – 9 con el eje X:

Explicamos qué son y cómo calcular los puntos de corte de la gráfica de una función con los ejes de coordenadas, con ejemplos y problemas resueltos. Secundaria. ESO. Funciones. Matemáticas

Tenemos dos soluciones y, por tanto, dos puntos de corte:

Explicamos qué son y cómo calcular los puntos de corte de la gráfica de una función con los ejes de coordenadas, con ejemplos y problemas resueltos. Secundaria. ESO. Funciones. Matemáticas

Gráfica de la función:

Explicamos qué son y cómo calcular los puntos de corte de la gráfica de una función con los ejes de coordenadas, con ejemplos y problemas resueltos. Secundaria. ESO. Funciones. Matemáticas

Otros ejemplos: 

La función f(x) = 3x – 6 corta a los dos ejes en un punto:

Explicamos qué son y cómo calcular los puntos de corte de la gráfica de una función con los ejes de coordenadas, con ejemplos y problemas resueltos. Secundaria. ESO. Funciones. Matemáticas

La función f(x) = x3 -4x corta al eje horizontal en 3 puntos:

Explicamos qué son y cómo calcular los puntos de corte de la gráfica de una función con los ejes de coordenadas, con ejemplos y problemas resueltos. Secundaria. ESO. Funciones. Matemáticas

Más ejemplos y temas relacionados:

 

 

Pendiente de una recta

Las rectas son las funciones que tienen la siguiente forma:

Explicamos cuándo dos rectas son paralelas o perpendiculares atendiendo a su pendiente. Con ejemplos y problemas resueltos paso a paso. ESO. Secundaria. Geometría plana. Matemáticas.

donde m y n son números constantes:

  • m es la pendiente de la recta
  • n es la ordenada en el origen

La pendiente de una recta tiene cierta importancia puesto que nos informa de algunas propiedades de la recta. Por ejemplo,

  • Si es positiva, la recta es creciente. Si es negativa, es decreciente.
  • Si la pendiente es m = 0, entonces se trata de una recta constante, es decir, una recta horizontal paralela al eje de las abscisas.
  • Cuanto mayor es |m|, mayor es el crecimiento/decrecimiento de la recta, es decir, cuanto mayor es |m|, más inclinada es la recta.
  • Dos rectas con la misma pendiente son paralelas.

Ejemplo 1: gráficas de las rectas y = 2x +  1  (azul) e y = x +  1  (rojo)

Explicamos cuándo dos rectas son paralelas o perpendiculares atendiendo a su pendiente. Con ejemplos y problemas resueltos paso a paso. ESO. Secundaria. Geometría plana. Matemáticas.

Como las dos pendientes (m = 2 y m = 1) son positivas, las rectas son crecientes. Además, la que tiene mayor pendiente (azul) crece más rápido (está más inclinada).

Ejemplo 2: gráficas de las rectas y = 2x +  1  (azul) e y = 2x –  1  (rojo)

Explicamos cuándo dos rectas son paralelas o perpendiculares atendiendo a su pendiente. Con ejemplos y problemas resueltos paso a paso. ESO. Secundaria. Geometría plana. Matemáticas.

Como ambas rectas tienen la misma pendiente (m = 2), son paralelas. 

 

Más ejemplos y temas relacionados:

Vértice de una parábola

Recordad que la función parábola tiene la forma

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

siendo a ≠ 0.

  • Si a>0, la parábola tiene forma de U.
  • Si a<0, la parábola tiene forma de .

Ejemplo: gráficas de las parábolas y = x2-1 (azul) e y = 2 -2x2 (naranja)

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

En rojo se representan los puntos donde las dos parábolas se cortan.

Vértice de la parábola

El vértice de la parábola es el punto más bajo de la misma (si la parábola tiene forma de U) o el punto más alto (si la parábola tiene forma de ).

La primera coordenada del vértice de la parábola f(x) = ax2 + bx + c es

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Y la segunda coordenada es su imagen:

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Ejemplo: calculamos el vértice de la parábola f(x) = -2x2 + 3:

Identificamos los coeficientes:

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Como a es negativo, la parábola tiene forma de . El vértice es un máximo.

La primera coordenada del vértice es

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Calculamos la segunda coordenada:

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Por tanto, el vértice es el punto

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Gráfica:

Explicamos las funciones cuadráticas o parábolas (definición, ejemplos, vértice, puntos de corte con los ejes, forma factorizada, forma canónica, intersección) y resolvemos problemas. Matemáticas. Funciones. Gráficas.

Más ejemplos y temas relacionados:

Número de soluciones de un sistema de ecuaciones NO lineales

Recordad que el Teorema de Rouché-Frobenius establece que un sistema de ecuaciones lineales puede:

  • No tener solución (sistema incompatible).
  • Tener una única solución (sistema compatible determinado).
  • Tener infinitas soluciones (sistema compatible indeterminado).

No ocurre lo mismo con los sistemas de ecuaciones NO lineales,  puesto que también puede darse el caso de que tengan un número finito de soluciones distintas, como mostramos en los dos siguientes ejemplos.

Ejemplo 1: sistema de 2 ecuaciones (una no lineal y otra lineal) con dos incógnitas:

Resolvemos tres sistemas de ecuaciones no lineales y comentamos las diferencias de este tipo de sistema con los sistemas de ecuaciones lineales. Con ejemplos explicados. Sistemas de ecuaciones no lineales resueltos. Bachillerato. Álgebra. Matemáticas.

Este sistema tiene dos soluciones distintas:

Resolvemos tres sistemas de ecuaciones no lineales y comentamos las diferencias de este tipo de sistema con los sistemas de ecuaciones lineales. Con ejemplos explicados. Sistemas de ecuaciones no lineales resueltos. Bachillerato. Álgebra. Matemáticas.

 

Ejemplo 2: sistema de 2 ecuaciones no lineales con dos incógnitas:

Resolvemos tres sistemas de ecuaciones no lineales y comentamos las diferencias de este tipo de sistema con los sistemas de ecuaciones lineales. Con ejemplos explicados. Sistemas de ecuaciones no lineales resueltos. Bachillerato. Álgebra. Matemáticas.

Este sistema tiene 3 soluciones distintas:

Resolvemos tres sistemas de ecuaciones no lineales y comentamos las diferencias de este tipo de sistema con los sistemas de ecuaciones lineales. Con ejemplos explicados. Sistemas de ecuaciones no lineales resueltos. Bachillerato. Álgebra. Matemáticas.

 

Lógicamente, el número de soluciones está relacionado con el tipo de ecuaciones implicadas en el sistema, pero sería difícil establecer una regla genérica. Cada sistema de ecuaciones no lineales es un caso especial.

La resolución de los sistemas anteriores podéis encontrarla en: sistemas de ecuaciones no lineales.

Temas relacionados: